Key Structural Features of Microvascular Networks Leading to the Formation of Multiple Equilibria

被引:0
|
作者
Atkinson, George [1 ]
Ben-Ami, Yaron [1 ]
Maini, Philip [1 ]
Pitt-Francis, Joe [2 ]
Byrne, Helen [1 ]
机构
[1] Univ Oxford, Math Inst, Wolfson Ctr Math Biol, Woodstock Rd, Oxford OX2 6GG, England
[2] Univ Oxford, Dept Comp Sci, Parks Rd, Oxford OX1 3QG, England
关键词
Microvascular blood flow; Multiple equilibria; Network redundancy; RED-CELL DISTRIBUTION; TUMOR VASCULATURE; CYCLING HYPOXIA; BLOOD-FLOW; RESISTANCE; ANGIOGENESIS; EXPRESSION; CANCER;
D O I
10.1007/s11538-024-01404-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We analyse mathematical models of blood flow in two simple vascular networks in order to identify structural features that lead to the formation of multiple equilibria. Our models are based on existing rules for blood rheology and haematocrit splitting. By performing bifurcation analysis on these simple network flow models, we identify a link between the changing flow direction in key vessels and the existence of multiple equilibria. We refer to these key vessels as redundant vessels, and relate the maximum number of equilibria with the number of redundant vessels. We vary geometric parameters of the two networks, such as vessel length ratios and vessel diameters, to demonstrate that equilibria are uniquely defined by the flow in the redundant vessels. Equilibria typically emerge in sets of three, each having a different flow characteristic in one of the network's redundant vessels. For one of the three equilibria, the flow within the relevant redundant vessel will be smaller in magnitude than the other two and the redundant vessel will contain few Red Blood Cells (RBCs), if any. For the other two equilibria, the redundant vessel contains RBCs and significant flow in the two available directions. These structural features of networks provide a useful geometric property when studying the equilibria of blood flow in microvascular networks.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Structural Features of Microvascular Networks Trigger Blood Flow Oscillations
    Y. Ben-Ami
    G. W. Atkinson
    J. M. Pitt-Francis
    P. K. Maini
    H. M. Byrne
    Bulletin of Mathematical Biology, 2022, 84
  • [2] Structural Features of Microvascular Networks Trigger Blood Flow Oscillations
    Ben-Ami, Y.
    Atkinson, G. W.
    Pitt-Francis, J. M.
    Maini, P. K.
    Byrne, H. M.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2022, 84 (08)
  • [3] Oscillations and Multiple Equilibria in Microvascular Blood Flow
    Nathaniel J. Karst
    Brian D. Storey
    John B. Geddes
    Bulletin of Mathematical Biology, 2015, 77 : 1377 - 1400
  • [4] Oscillations and Multiple Equilibria in Microvascular Blood Flow
    Karst, Nathaniel J.
    Storey, Brian D.
    Geddes, John B.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2015, 77 (07) : 1377 - 1400
  • [5] Structural adaptation in microvascular networks
    Pries, AR
    Secomb, TW
    Gaehtgens, P
    PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1997, 433 (06): : SY659 - SY659
  • [6] Formation of microvascular networks in vitro
    Morgan, John P.
    Delnero, Peter F.
    Zheng, Ying
    Verbridge, Scott S.
    Chen, Junmei
    Craven, Michael
    Choi, Nak Won
    Diaz-Santana, Anthony
    Kermani, Pouneh
    Hempstead, Barbara
    Lopez, Jose A.
    Corso, Thomas N.
    Fischbach, Claudia
    Stroock, Abraham D.
    NATURE PROTOCOLS, 2013, 8 (09) : 1820 - 1836
  • [7] Formation of microvascular networks in vitro
    John P Morgan
    Peter F Delnero
    Ying Zheng
    Scott S Verbridge
    Junmei Chen
    Michael Craven
    Nak Won Choi
    Anthony Diaz-Santana
    Pouneh Kermani
    Barbara Hempstead
    José A López
    Thomas N Corso
    Claudia Fischbach
    Abraham D Stroock
    Nature Protocols, 2013, 8 : 1820 - 1836
  • [8] Key Node Discovery Algorithm Based on Multiple Relationships and Multiple Features in Social Networks
    Li, Xianyong
    Tang, Ying
    Du, Yajun
    Li, Yanjie
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [9] Model Microvascular Networks Can Have Many Equilibria
    Nathaniel J. Karst
    John B. Geddes
    Russell T. Carr
    Bulletin of Mathematical Biology, 2017, 79 : 662 - 681
  • [10] Model Microvascular Networks Can Have Many Equilibria
    Karst, Nathaniel J.
    Geddes, John B.
    Carr, Russell T.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2017, 79 (03) : 662 - 681