A nonlocal coupled system involving N-Laplacian operator: existence and asymptotic behavior of positive solutions

被引:0
|
作者
Guefaifia, Rafik [1 ]
Bellamouchi, Chahinez [2 ]
Boulaaras, Salah [1 ]
Jan, Rashid [3 ,4 ]
机构
[1] Qassim Univ, Coll Sci, Dept Math, Buraydah 51452, Saudi Arabia
[2] Univ El Oued, Labo Oper Theo & Part Diff Eq Fdn & Applicat, BP 789, El Oued 39035, Algeria
[3] Univ Tenaga Nas, Inst Energy Infrastruct IEI, Coll Engn, Dept Civil Engn, Putrajaya Campus,Jalan IKRAM UNITEN, Kajang 43000, Selangor, Malaysia
[4] Near East Univ North Cyprus, Math Res Ctr, Mersin 10, TR-99138 Nicosia, Turkiye
来源
BOUNDARY VALUE PROBLEMS | 2025年 / 2025卷 / 01期
关键词
Nonlocal elliptic systems; Singular equation; Asymptotic behavior; Trudinger-Moser inequality; Nonlinear equations;
D O I
10.1186/s13661-025-02006-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of positive solutions for a nonlocal singular elliptic coupled system involving N-Laplace operator. The source term of the system is expressed as the sum of two components: one with subcritical, critical, or supercritical exponential growth controlled by the Trudinger-Moser inequality, and the other being singular at the origin. We also investigate the asymptotic behavior of the solutions with respect to the parameters. Furthermore, we prove that no solutions exist for our system in dimension N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N=2$\end{document}.
引用
收藏
页数:21
相关论文
共 50 条