Eigenvalue variations of the Neumann Laplace operator due to perturbed boundary conditions

被引:0
|
作者
Nursultanov, Medet [1 ,2 ]
Trad, William [3 ]
Tzou, Justin [4 ]
Tzou, Leo [5 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[2] Inst Math & Math Modeling Almaty, Alma Ata, Kazakhstan
[3] Univ Sydney, Sch Math & Stat, Sydney, Australia
[4] Macquarie Univ, Sch Math & Phys Sci, Sydney, Australia
[5] Univ Amsterdam, Amsterdam, Netherlands
基金
芬兰科学院; 澳大利亚研究理事会;
关键词
Eigenvalues; Neumann Laplacian; Singular perturbation; SMALL-DIAMETER; ELECTROMAGNETIC-FIELDS; NARROW ESCAPE; PERTURBATIONS; ASYMPTOTICS; FORMULA; INHOMOGENEITIES; TIME;
D O I
10.1007/s40687-024-00486-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work considers the Neumann eigenvalue problem for the weighted Laplacian on a Riemannian manifold (M,g,partial derivative M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,g,\partial M)$$\end{document} under a singular perturbation. This perturbation involves the imposition of vanishing Dirichlet boundary conditions on a small portion of the boundary. We derive an asymptotic expansion of the perturbed eigenvalues as the Dirichlet part shrinks to a point x & lowast;is an element of partial derivative M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x<^>*\in \partial M$$\end{document} in terms of the spectral parameters of the unperturbed system. This asymptotic expansion demonstrates the impact of the geometric properties of the manifold at a specific point x & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x<^>*$$\end{document}. Furthermore, it becomes evident that the shape of the Dirichlet region holds significance as it impacts the first terms of the asymptotic expansion. A crucial part of this work is the construction of the singularity structure of the restricted Neumann Green's function which may be of independent interest. We employ a fusion of layer potential techniques and pseudo-differential operators during this work.
引用
收藏
页数:27
相关论文
共 50 条