Multiscale fail-safe topology optimization for lattice structures

被引:0
|
作者
Huang, Huili [1 ]
Ding, Wei [1 ]
Jia, Huanfei [1 ]
Zuo, Wenjie [1 ]
Cheng, Fei [1 ]
机构
[1] School of Mechanical and Aerospace Engineering, Jilin University, Changchun,130025, China
基金
中国国家自然科学基金;
关键词
Shape optimization - Structural optimization;
D O I
10.1016/j.tws.2024.112693
中图分类号
学科分类号
摘要
In this paper, we address the critical issue of lattice structures losing functionality under local damage, which is a common safety deficiency in traditional lattice designs. A novel multiscale fail-safe topology optimization method is proposed to enhance the robustness of lattice structures. The method uses a simplified local damage model, aiming to minimize strain energy under the most critical failure scenarios, with design variables including macroscopic topology and geometric parameters of microscopic unit cells. By predefining an equivalent material model for the parameterized lattice structure, computational costs are significantly reduced. To overcome the non-differentiability of maximum strain energy, the Kreisselmeier-Steinhauser function is introduced as a substitute. Consequently, numerical simulation results demonstrate that this method effectively enhances lattice structure safety by providing more load-bearing paths to resist local damage. Compared to other fail-safe topology optimization methods, this approach expands the design space while maintaining the same computational cost, and it does not require adjustments to the predefined unit cell configuration for different working conditions. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [1] Fail-safe topology optimization for multiscale structures
    Yang, Jianghong
    Su, Hailiang
    Li, Xinqing
    Wang, Yingjun
    COMPUTERS & STRUCTURES, 2023, 284
  • [2] Fail-safe topology optimization
    Ming Zhou
    Raphael Fleury
    Structural and Multidisciplinary Optimization, 2016, 54 : 1225 - 1243
  • [3] Fail-safe topology optimization
    Zhou, Ming
    Fleury, Raphael
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2016, 54 (05) : 1225 - 1243
  • [4] Adaptive topology optimization of fail-safe truss structures
    Helen E. Fairclough
    Linwei He
    Tekle B. Asfaha
    Sam Rigby
    Structural and Multidisciplinary Optimization, 2023, 66
  • [5] Adaptive topology optimization of fail-safe truss structures
    Fairclough, Helen E.
    He, Linwei
    Asfaha, Tekle B.
    Rigby, Sam
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2023, 66 (07)
  • [6] Fail-safe truss topology optimization
    Mathias Stolpe
    Structural and Multidisciplinary Optimization, 2019, 60 : 1605 - 1618
  • [7] Fail-safe truss topology optimization
    Stolpe, Mathias
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (04) : 1605 - 1618
  • [8] Fail-safe topology optimization considering fatigue
    Tong Zhao
    Yong Zhang
    Yangwei Ou
    Wei Ding
    Fei Cheng
    Structural and Multidisciplinary Optimization, 2023, 66
  • [9] Fail-safe topology optimization considering fatigue
    Zhao, Tong
    Zhang, Yong
    Ou, Yangwei
    Ding, Wei
    Cheng, Fei
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2023, 66 (06)
  • [10] Fail-safe optimization of beam structures
    Luedeker, Julian Kajo
    Kriegesmann, Benedikt
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2019, 6 (03) : 260 - 268