Weyl-invariant Einstein-Cartan gravity: unifying the strong CP and hierarchy puzzles

被引:1
|
作者
Karananas, Georgios K. [1 ]
Shaposhnikov, Mikhail [2 ]
Zell, Sebastian [1 ,3 ,4 ]
机构
[1] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr, Theresienstr 37, D-80333 Munich, Germany
[2] Ecole Polytech Fed Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
[3] Max Planck Inst Phys & Astrophys, Boltzmannstr 8, D-85748 Munich, Germany
[4] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, B-1348 Louvain La Neuve, Belgium
来源
基金
欧洲研究理事会;
关键词
Axions and ALPs; Classical Theories of Gravity; Space-Time Symmetries; POINCARE GAUGE-THEORY; HIGGS-DILATON COSMOLOGY; INITIAL-VALUE PROBLEM; FREE QUANTUM-THEORY; GENERAL-RELATIVITY; FUNDAMENTAL PARTICLES; DYNAMICAL MODEL; SHOCK-WAVES; DARK-MATTER; TORSION;
D O I
10.1007/JHEP11(2024)146
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show that the minimal Weyl-invariant Einstein-Cartan gravity in combination with the Standard Model of particle physics contains just one extra scalar degree of freedom (in addition to the graviton and the Standard Model fields) with the properties of an axion-like particle which can solve the strong CP-problem. The smallness of this particle's mass as well as of the cosmological constant is ensured by tiny values of the gauge coupling constants of the local Lorentz group. The tree value of the Higgs boson mass and that of Majorana leptons (if added to the Standard Model to solve the neutrino mass, baryogenesis and dark matter problems) are very small or vanishing, opening the possibility of their computability in terms of the fundamental parameters of the theory due to nonperturbative effects.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Geometrical origin of inflation in Weyl-invariant Einstein-Cartan gravity
    Karananas, Georgios K.
    PHYSICS LETTERS B, 2025, 862
  • [2] Scale and Weyl invariance in Einstein-Cartan gravity
    Karananas, Georgios K.
    Shaposhnikov, Mikhail
    Shkerin, Andrey
    Zell, Sebastian
    PHYSICAL REVIEW D, 2021, 104 (12)
  • [3] Asymptotically Weyl-invariant gravity
    Coumbe, Daniel
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (31):
  • [4] Einstein-Cartan gravity, matter, and scale-invariant generalization
    M. Shaposhnikov
    A. Shkerin
    I. Timiryasov
    S. Zell
    Journal of High Energy Physics, 2020
  • [5] Einstein-Cartan gravity, matter, and scale-invariant generalization
    Shaposhnikov, M.
    Shkerin, A.
    Timiryasov, I.
    Zell, S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (10)
  • [6] Gauging the scale invariance of Einstein equations: Weyl-invariant equations for gravity
    Banados, Maximo
    PHYSICAL REVIEW D, 2025, 111 (04)
  • [7] Scale invariant Einstein-Cartan gravity and flat space conformal symmetry
    Georgios K. Karananas
    Mikhail Shaposhnikov
    Sebastian Zell
    Journal of High Energy Physics, 2023
  • [8] Erratum to: Einstein-Cartan gravity, matter, and scale-invariant generalization
    M. Shaposhnikov
    A. Shkerin
    I. Timiryasov
    S. Zell
    Journal of High Energy Physics, 2021
  • [9] Scale invariant Einstein-Cartan gravity and flat space conformal symmetry
    Karananas, Georgios K.
    Shaposhnikov, Mikhail
    Zell, Sebastian
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
  • [10] Is asymptotically Weyl-invariant gravity viable?
    Coumbe, Daniel
    PHYSICAL REVIEW D, 2021, 103 (08)