The generalized maximal operator on measures

被引:0
|
作者
Bonazza, J. [1 ]
Carena, M. [2 ]
Toschi, M. [3 ]
机构
[1] UNL, Fac Ingn Quim, Santa Fe, Argentina
[2] UNL, Fac Ingn & Ciencias Hidr, CONICET, Santa Fe, Argentina
[3] UNL, Inst Matemat Aplicada Litoral, Dept Matemat,CONICET UNL, FHUC, Santa Fe, Argentina
关键词
Muckenhoupt weight; maximal operator; space of homogeneous type;
D O I
10.1007/s10476-025-00066-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we present the definition of the generalized maximal operator M Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\Phi$$\end{document} acting on measures and we prove some of its basic properties. More precisely, we demonstrate that M Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\Phi$$\end{document} satisfies a Kolmogorov inequality and that this operator is of weak type (1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,1)$$\end{document}. This allow us to obtain a family of Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_p$$\end{document} weights involving the distance d(x,F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(x,F)$$\end{document} to a closed set F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} in a framework of Ahlfors spaces. Also, we prove that M Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\Phi$$\end{document} satisfies a weighted modular weak type inequality associated to the Young function Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi$$\end{document}, and we give another one that yields a sufficient condition for the weight to belong to the A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_1$$\end{document} class.
引用
收藏
页码:75 / 97
页数:23
相关论文
共 50 条