Genome-wide identification of the P4ATPase gene family and its response to biotic and abiotic stress in soybean (Glycine max L.)

被引:0
|
作者
Wei, Jingjing [1 ]
Zhang, Gaoyang [1 ]
Lv, Huanhuan [2 ]
Wang, Saidi [1 ]
Liu, Xingyu [1 ]
Qi, Yanli [1 ]
Sun, Zhongke [1 ]
Li, Chengwei [1 ]
机构
[1] Henan Univ Technol, Sch Biol Engn, 100 Lianhua St,Zhengzhou High Tech Dev Zone, Zhengzhou 450001, Henan, Peoples R China
[2] Henan Univ Technol, Coll Adv Interdisciplinary Sci & Technol, Zhengzhou 450001, Peoples R China
来源
BMC GENOMICS | 2025年 / 26卷 / 01期
基金
中国国家自然科学基金;
关键词
P4-ATPases; Bioinformatics analysis; Expression patterns; Stress response; CHILLING TOLERANCE; ARABIDOPSIS; P4-ATPASE; ROLES;
D O I
10.1186/s12864-025-11468-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundSoybean is an important legume crop and has significant agricultural and economic value. P4-ATPases (aminophospholipid ATPases, ALAs), one of the classes of P-type ATPases, can transport or flip phospholipids across membranes, creating and maintaining lipid asymmetry and playing crucial roles in plant growth and development. To date, however, the ALA gene family and its expression patterns under abiotic and biotic stresses have not been studied in the soybean genome.ResultsA total of 27 GmALA genes were identified in the soybean genome and these genes were unevenly distributed on 15 chromosomes and classified into five groups based on phylogenetic analysis. The GmALAs family had diverse intron-exon patterns and a highly conserved motif distribution. A total of eight domains were found in GmALAs, and all GmALAs had conserved PhoLip_ATPase_C, phosphorylation and transmembrane domains. Cis-acting elements in the promoter demonstrated that GmALAs are associated with cellular development, phytohormones, environmental stress and photoresponsiveness. Analysis of gene duplication events revealed 24 orthologous gene pairs in soybean and synteny analysis revealed that GmALAs had greater collinearity with AtALAs than with OsALAs. Evolutionary constraint analyses suggested that GmALAs have undergone strong selective pressure for purification during the evolution of soybeans. Tissue-specific expression profiles revealed that GmALAs were differentially expressed in roots, stems, seeds, flowers, nodules and leaves. The expression pattern of these genes appeared to be diverse in the different developmental tissues. Combined transcriptome and qRT-PCR data confirmed the differential expression of GmALAs under abiotic (dehydration, saline, low temperature, ozone, light, wounding and phytohormones) and biotic stresses (aphid, fungi, rhizobia and rust pathogen).ConclusionIn summary, genome-wide identification and evolutionary and expression analyses of the GmALAs gene family in soybean were conducted. Our work provides an important theoretical basis for further understanding GmALAs in biological functional studies.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Genome-Wide Identification and Characterization of the Abiotic-Stress-Responsive LACS Gene Family in Soybean (Glycine max)
    Wang, Jie
    Li, Xiaoxue
    Zhao, Xunchao
    Na, Chen
    Liu, Hongliang
    Miao, Huanran
    Zhou, Jinghang
    Xiao, Jialei
    Zhao, Xue
    Han, Yingpeng
    AGRONOMY-BASEL, 2022, 12 (07):
  • [2] Genome-wide identification and expression analysis of the YUCCA gene family in soybean (Glycine max L.)
    Wang, Yuange
    Liu, Huaihua
    Wang, Shuping
    Li, Hongjie
    PLANT GROWTH REGULATION, 2017, 81 (02) : 265 - 275
  • [3] Genome-wide identification and expression analysis of the YUCCA gene family in soybean (Glycine max L.)
    Yuange Wang
    Huaihua Liu
    Shuping Wang
    Hongjie Li
    Plant Growth Regulation, 2017, 81 : 265 - 275
  • [4] Genome-Wide Identification of the Phytocyanin Gene Family and Its Potential Function in Salt Stress in Soybean (Glycine max (L.) Merr.)
    Wang, Li
    Zhang, Jinyu
    Li, Huici
    Zhang, Gongzhan
    Hu, Dandan
    Zhang, Dan
    Xu, Xinjuan
    Yang, Yuming
    Huang, Zhongwen
    AGRONOMY-BASEL, 2023, 13 (10):
  • [5] Genome-wide identification and expression analysis of the KCS gene family in soybean (Glycine max) reveal their potential roles in response to abiotic stress
    Gong, Yujie
    Wang, Deying
    Xie, Haojie
    Zhao, Zewei
    Chen, Yuyue
    Zhang, Dongxue
    Jiao, Yexuan
    Shi, Mengmeng
    Lv, Peng
    Sha, Qi
    Yang, Jing
    Chu, Pengfei
    Sun, Yongwang
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [6] Genome-Wide Identification and Expression Analysis of NRAMP Family Genes in Soybean (Glycine Max L.)
    Qin, Lu
    Han, Peipei
    Chen, Liyu
    Walk, Thomas C.
    Li, Yinshui
    Hu, Xiaojia
    Xie, Lihua
    Liao, Hong
    Liao, Xing
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [7] Genome-Wide Identification and Exogenous Hormone and Stress Response Expression Analysis of the GARP Gene Family in Soybean (Glycine max)
    Cai, Lijun
    Guo, Zhenhua
    Ding, Junjie
    Gai, Zhijia
    Liu, Jingqi
    Meng, Qingying
    Yang, Xu
    Zhang, Na
    Wang, Qingsheng
    AGRICULTURE-BASEL, 2024, 14 (12):
  • [8] Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max)
    Zhang, Jinyu
    Zou, Liying
    Wang, Li
    Zhang, Dongchao
    Shen, Ao
    Lei, Yongqi
    Chao, Maoni
    Xu, Xinjuan
    Xue, Zhiwei
    Huang, Zhongwen
    BMC GENOMICS, 2025, 26 (01):
  • [9] Genome-Wide Identification of the Whirly Gene Family and Its Potential Function in Low Phosphate Stress in Soybean (Glycine max)
    Li, Zhimin
    Zhai, Xuhao
    Zhang, Lina
    Yang, Yifei
    Zhu, Hongqing
    Lue, Haiyan
    Xiong, Erhui
    Chu, Shanshan
    Zhang, Xingguo
    Zhang, Dan
    Hu, Dandan
    GENES, 2024, 15 (07)
  • [10] Genome-Wide Identification and Comprehensive Analysis of the FtsH Gene Family in Soybean (Glycine max)
    Shan, Qi
    Zhou, Baihui
    Wang, Yuanxin
    Hao, Feiyu
    Zhu, Lin
    Liu, Yuhan
    Wang, Nan
    Wang, Fawei
    Li, Xiaowei
    Dong, Yuanyuan
    Xu, Keheng
    Zhou, Yonggang
    Li, Haiyan
    Liu, Weican
    Gao, Hongtao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (23)