Uveitis refers to a diverse group of inflammatory diseases that affecting the uveal tract, comprising the iris, ciliary body, and choroid, with potential repercussions ranging from visual impairment to blindness. The role of autoimmunity in uveitis etiology is complex and still under investigation. CD4(+) T cells intricately regulate immune responses in uveitis through their diverse subtypes: Th1, Th2, Th17, Treg (T regulatory), and Tfh (follicular T helper) cells. Each T cell subtype secretes specific cytokines with either pathogenic or protective implications in uveitis. Th1 cells, characterized by IFN-gamma secretion and T-bet expression, drive type 1 immune responses against intracellular pathogens. Conversely, Th2 cells, which produce interleukin (IL)-4, IL-5, and IL-13 and express the transcription factor GATA3, mediate type 2 immune responses to larger extracellular threats like helminths. Th17 cells, generating IL-17 and IL-22 and controlled by ROR gamma t, engage in type 3 immune responses against select pathogens. Tfh cells, releasing IL-21 and governed by Bcl6, aid B cell antibody production. Conversely, Tregs, identified by Foxp3, exert regulatory functions in immune homeostasis. This review delves into the roles of CD4(+) T cell-derived cytokines in uveitis, emphasizing their intricate involvement in disease progression and resolution. Insight into these mechanisms might guide therapeutic approaches targeting CD4(+) T cell responses in uveitis management.