Efficient reliability analysis via a nonlinear autoregressive multi-fidelity surrogate model and active learning

被引:0
|
作者
Li, Yifan [1 ]
Xiang, Yongyong [1 ]
Shi, Luojie [1 ]
Pan, Baisong [1 ]
机构
[1] Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310023, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Reliability analysis; Multi-fidelity surrogate model; Active learning; Nonlinearity; Residual model; STRUCTURAL RELIABILITY; SUBSET SIMULATION; OPTIMIZATION; DESIGN; MOMENT;
D O I
10.1631/jzus.A2300340
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For complex engineering problems, multi-fidelity modeling has been used to achieve efficient reliability analysis by leveraging multiple information sources. However, most methods require nested training samples to capture the correlation between different fidelity data, which may lead to a significant increase in low-fidelity samples. In addition, it is difficult to build accurate surrogate models because current methods do not fully consider the nonlinearity between different fidelity samples. To address these problems, a novel multi-fidelity modeling method with active learning is proposed in this paper. Firstly, a nonlinear autoregressive multi-fidelity Kriging (NAMK) model is used to build a surrogate model. To avoid introducing redundant samples in the process of NAMK model updating, a collective learning function is then developed by a combination of a U-learning function, the correlation between different fidelity samples, and the sampling cost. Furthermore, a residual model is constructed to automatically generate low-fidelity samples when high-fidelity samples are selected. The efficiency and accuracy of the proposed method are demonstrated using three numerical examples and an engineering case.
引用
收藏
页码:922 / 937
页数:16
相关论文
共 50 条
  • [1] AMFGP: An active learning reliability analysis method based on multi-fidelity Gaussian process surrogate model
    Lu, Ning
    Li, Yan-Feng
    Mi, Jinhua
    Huang, Hong-Zhong
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 246
  • [2] An active-learning method based on multi-fidelity Kriging model for structural reliability analysis
    Jiaxiang Yi
    Fangliang Wu
    Qi Zhou
    Yuansheng Cheng
    Hao Ling
    Jun Liu
    Structural and Multidisciplinary Optimization, 2021, 63 : 173 - 195
  • [3] An active-learning method based on multi-fidelity Kriging model for structural reliability analysis
    Yi, Jiaxiang
    Wu, Fangliang
    Zhou, Qi
    Cheng, Yuansheng
    Ling, Hao
    Liu, Jun
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 63 (01) : 173 - 195
  • [4] Multi-fidelity optimization via surrogate modelling
    Forrester, Alexander I. J.
    Sobester, Andras
    Keane, Andy J.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2088): : 3251 - 3269
  • [5] An Adaptive Multi-Fidelity Surrogate Model for Uncertainty Propagation Analysis
    Xiao, Wei
    Shen, Yingying
    Zhao, Jiao
    Lv, Luogeng
    Chen, Jiangtao
    Zhao, Wei
    APPLIED SCIENCES-BASEL, 2025, 15 (06):
  • [6] Application of Multi-Fidelity Transfer Learning with Autoencoders for Efficient Construction of Surrogate Models
    Shen, Yiren
    Patel, Harsh C.
    Xu, Zan
    Alonso, Juan J.
    AIAA SCITECH 2024 FORUM, 2024,
  • [7] An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis
    Shang, Xiaobing
    Su, Li
    Fang, Hai
    Zeng, Bowen
    Zhang, Zhi
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 229
  • [8] Seismic reliability analysis using a multi-fidelity surrogate model: Example of base-isolated buildings
    Skandalos, Konstantinos
    Chakraborty, Souvik
    Tesfamariam, Solomon
    STRUCTURAL SAFETY, 2022, 97
  • [9] Active learning-assisted multi-fidelity surrogate modeling based on geometric transformation
    Hai, Chunlong
    Qian, Weiqi
    Wang, Wenzheng
    Mei, Liquan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 426
  • [10] Ensemble learning based hierarchical surrogate model for multi-fidelity information fusion
    Wang, Yitang
    Pang, Yong
    Xue, Tianhang
    Zhang, Shuai
    Song, Xueguan
    ADVANCED ENGINEERING INFORMATICS, 2024, 60