Time-asymptotic stability of composite waves of degenerate Oleinik shock and rarefaction for non-convex conservation laws
被引:1
|
作者:
Huang, Feimin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
Huang, Feimin
[1
,2
]
Wang, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
Wang, Yi
[1
,2
]
Zhang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
Zhang, Jian
[1
,2
]
机构:
[1] Chinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
We are concerned with the large-time behavior of the solution to one-dimensional (1D) cubic non-convex scalar viscous conservation laws. Due to the inflection point of the cubic non-convex flux, the solution to the corresponding inviscid Riemann problem can be the composite wave of a degenerate Oleinik shock and a rarefaction wave and these two nonlinear waves are always attached together. We give a first proof of the time-asymptotic stability of this composite wave, up to a time-dependent shift to the viscous Oleinik shock, for the viscous equation. The Oleinik shock wave strength can be arbitrarily large. The main difficulty is due to the incompatibility of the time-asymptotic stability proof framework of individual viscous shock by the so-called anti-derivative method and the direct L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-energy method to rarefaction wave. Here we develop a new type of a-contraction method with suitable weight function and the time-dependent shift to the viscous shock, which is motivated by Kang and Vasseur (Ann l'Institut Henri Poincar & eacute; C Analyse non lineaire 34(1):139156, 2017) and Kang et al. (Adv Math 419:108963, 2023). Another difficulty comes from that the Oleinik shock and rarefaction wave are always attached together and their wave interactions are very subtle. Therefore, the same time-dependent shift needs to be equipped to both Oleinik shock and rarefaction wave such that the wave interactions can be treated in our stability proof. Time-asymptotically, this shift function grows strictly sub-linear with respect to the time and then the shifted rarefaction wave is equivalent to the original self-similar rarefaction wave.
机构:
Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 34141, South Korea
Kang, Moon-Jin
Vasseur, Alexis F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Austin, Dept Math, Austin, TX 78712 USAKorea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 34141, South Korea
Vasseur, Alexis F.
Wang, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, AMSS, Inst Appl Math, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaKorea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 34141, South Korea
机构:
Chinese Univ Hong Kong, IMS, Shatin, Hong Kong, Peoples R China
Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, IMS, Shatin, Hong Kong, Peoples R China
Xin, Zhouping
Yuan, Qian
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, IMS, Shatin, Hong Kong, Peoples R China
Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, IMS, Shatin, Hong Kong, Peoples R China
Yuan, Qian
Yuan, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
South China Normal Univ, South China Res Ctr Appl Math & Interdisciplinary, Guangzhou, Guangdong, Peoples R ChinaChinese Univ Hong Kong, IMS, Shatin, Hong Kong, Peoples R China
机构:
Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
Xin, Zhouping
Yuan, Qian
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing, Peoples R ChinaChinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
Yuan, Qian
Yuan, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
South China Normal Univ, Sch Math Sci, Guangzhou, Guangdong, Peoples R ChinaChinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
机构:
Department of Mathematics, Henan Normal University, Xinxiang
Otto-von-Guericke-University, Department of Mathematics, Box 4120Department of Mathematics, Henan Normal University, Xinxiang
Liu H.
Wang J.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Systems Science, Academia SinicaDepartment of Mathematics, Henan Normal University, Xinxiang
机构:
Univ Yamanashi, Grad Fac Interdisciplinary Res, Fac Educ, Takeda 4 4 37, Kofu, Yamanashi 4008510, JapanUniv Yamanashi, Grad Fac Interdisciplinary Res, Fac Educ, Takeda 4 4 37, Kofu, Yamanashi 4008510, Japan