High convergence order iterative method for nonlinear system of equations in Banach spaces

被引:0
|
作者
Sharma, Rajni [1 ]
Deep, Gagan [2 ,3 ]
Bala, Neeru [1 ]
机构
[1] DAV Inst Engn & Technol, Dept Appl Sci, Jalandhar 144008, Punjab, India
[2] Hans Raj Mahila Mahavidyalaya, Dept Math, Jalandhar 144008, Punjab, India
[3] IK Gujral Punjab Tech Univ, Kapurthala 144601, Punjab, India
来源
关键词
Banach spaces; Local convergence; Iterative methods; Efficiency; LOCAL CONVERGENCE; SOLVING SYSTEMS;
D O I
10.1007/s41478-025-00888-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, an efficient eighth-order iterative method is proposed for solving systems of nonlinear equations in Banach spaces. The local convergence is analyzed by assuming weaker omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document}-continuity condition on first order Fr & eacute;chet derivative which thus expands the applicability of the method for such problems where the earlier study based on Lipschitz or H & ouml;lder conditions cannot be used. Computational Efficiency of the proposed scheme is studied and compared with existing iterative methods. Numerical experiments are performed on a variety of real life problems including Kepler's equation, Van der waals equation of state, mixed Hammerstein-type equation etc. and comparison results are corroborated to extend the utility of presented method.
引用
收藏
页码:989 / 1018
页数:30
相关论文
共 50 条
  • [1] Extended Higher Order Iterative Method for Nonlinear Equations and its Convergence Analysis in Banach Spaces
    Deep, Gagan
    Argyros, Ioannis K.
    Verma, Gaurav
    Kaur, Simardeep
    Kaur, Rajdeep
    Regmi, Samundra
    CONTEMPORARY MATHEMATICS, 2024, 5 (01): : 230 - 254
  • [2] Convergence of a parameter based iterative method for solving nonlinear equations in Banach spaces
    Maroju P.
    Behl R.
    Motsa S.S.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (1): : 17 - 31
  • [3] ON THE CONVERGENCE OF A FIFTH-ORDER ITERATIVE METHOD IN BANACH SPACES
    Gagandeep
    Sharma, Rajni
    Argyros, I. K.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 13 (01): : 16 - 40
  • [4] Ball Convergence of an Efficient High Order Iterative Method for Solving Banach Valued Equations
    Argyros, Ioannis K.
    George, Santhosh
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2022, 46 (02) : 141 - 150
  • [5] On the local convergence of a fifth-order iterative method in Banach spaces
    Cordero, A.
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    Torregrosa, J. R.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 251 : 396 - 403
  • [6] An Efficient Iterative Method With Order Of Convergence Seven for Nonlinear Equations
    Hu, Yunhong
    Fang, Liang
    Guo, Lifang
    Hu, Zhongyong
    ADVANCES IN MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 220-223 : 2574 - +
  • [7] A CONTINUATION METHOD AND ITS CONVERGENCE FOR SOLVING NONLINEAR EQUATIONS IN BANACH SPACES
    Prashanth, M.
    Gupta, D. K.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2013, 10 (04)
  • [8] Local Convergence of a Seventh Order Derivative-Free Method for Solving Nonlinear Equations in Banach Spaces
    Bhavna
    Bhatia S.
    International Journal of Applied and Computational Mathematics, 2022, 8 (3)
  • [9] CONVERGENCE OF PARALLEL ITERATIVE ALGORITHMS FOR A SYSTEM OF NONLINEAR VARIATIONAL INEQUALITIES IN BANACH SPACES
    Jeong, Jae Ug
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2016, 34 (1-2): : 61 - 73
  • [10] Iterative solutions of nonlinear equations in smooth Banach spaces
    Chidume, CE
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (11) : 1823 - 1834