Exploring ZnMOF-74 as an anode material for lithium-ion batteries

被引:0
|
作者
Alena A. Starodubtseva [1 ]
Tatyana V. Kan [1 ]
Vladislav A. Dubrovskiy [1 ]
Yaroslav S. Zhigalenok [2 ]
Alina K. Galeyeva [1 ]
Ivan A. Trussov [1 ]
机构
[1] Al-Farabi Kazakh National University,Scientific Research Institute of New Chemical Technologies and Materials
[2] Al-Farabi Kazakh National University,undefined
关键词
ZnMOF-74; Anode material; Lithium-ion batteries; Metal–organic frameworks (MOFs); Lithiation/delithiation; Energy storage;
D O I
10.1007/s11581-025-06132-4
中图分类号
学科分类号
摘要
This study investigates the electrochemical properties of zinc-based metal–organic framework MOF-74 (ZnMOF-74) as a potential anode material for lithium-ion batteries (LIBs). Commercial graphite anodes are limited by a low specific capacity of 372 mAh/g, prompting the search for alternative materials with higher energy density. ZnMOF-74 was synthesized via a co-precipitation method and characterized using XRD, FTIR, SEM, and thermal analysis, confirming its crystalline structure and porosity. Electrochemical measurements, including cyclic voltammetry and galvanostatic cycling, revealed an initial high capacity exceeding 800 mAh/g in the first discharge cycle. However, a significant capacity drop to 273 mAh/g occurred in the second cycle, stabilizing around 67 mAh/g after 170 cycles. This rapid decline is attributed to the irreversible degradation of the MOF-74 framework during initial cycling, leading to the formation of Zn–Li compounds. The study concludes that the zinc center in MOF-74 does not facilitate electron mobility via the extended π-systems of the organic linker, hindering reversible redox processes and causing structural breakdown. Compared to MOFs with other metal centers like cobalt, ZnMOF-74 shows limited electrochemical reversibility and stability. Therefore, while ZnMOF-74 exhibits initial high capacity, its practical application as an anode material is constrained by structural degradation.
引用
收藏
页码:3173 / 3183
页数:10
相关论文
共 50 条
  • [1] An anode material of CrN for lithium-ion batteries
    Sun, Qian
    Fu, Zheng-Wen
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (08) : A189 - A193
  • [2] Nanotubes as anode material for lithium-ion batteries
    Loutfy, RO
    Hossain, S
    Moravsky, A
    Saleh, M
    PERSPECTIVES OF FULLERENE NANOTECHNOLOGY, 2002, : 341 - 355
  • [3] Magnesium Sulphide as Anode Material for Lithium-Ion Batteries
    Helen, M.
    Fichtner, Maximilian
    ELECTROCHIMICA ACTA, 2015, 169 : 180 - 185
  • [4] Synthetic hureaulite as anode material for lithium-ion batteries
    Pan, Meng-Yao
    Lu, Si-Tong
    Li, Yan-Yan
    Fan, Yang
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2023, 53 (05) : 1015 - 1022
  • [5] Synthetic hureaulite as anode material for lithium-ion batteries
    Meng-Yao Pan
    Si-Tong Lu
    Yan-Yan Li
    Yang Fan
    Journal of Applied Electrochemistry, 2023, 53 : 1015 - 1022
  • [6] Aluminum: An underappreciated anode material for lithium-ion batteries
    Chang, Xinghua
    Xie, Zewei
    Liu, Zhiliang
    Zheng, Xinyao
    Zheng, Jie
    Li, Xingguo
    ENERGY STORAGE MATERIALS, 2020, 25 : 93 - 99
  • [7] Carbon Allotropes as Anode Material for Lithium-Ion Batteries
    Rajkamal, A.
    Thapa, Ranjit
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (10):
  • [8] Investigation of lithium insertion in anode material CuSn for lithium-ion batteries
    Hou, Zhu-Feng
    Liu, Hui-Ying
    Zhu, Zi-Zhong
    Huang, Mei-Chun
    Yang, Yong
    Wuli Xuebao/Acta Physica Sinica, 2003, 52 (04):
  • [9] Investigation of lithium insertion in anode material CuSn for lithium-ion batteries
    Hou, ZF
    Liu, HY
    Zhu, ZZ
    Huang, MC
    Yang, Y
    ACTA PHYSICA SINICA, 2003, 52 (04) : 952 - 957
  • [10] Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries
    Wang, GX
    Sun, L
    Bradhurst, DH
    Zhong, S
    Dou, SX
    Liu, HK
    JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 306 (1-2) : 249 - 252