This work describes a unique design for a compact multiple-input multiple-output (MIMO) antenna based on Yagi-uda components and optimized for 5G sub-6 GHz band applications. The antenna, which operates in the frequency range of 3.1-8.9 GHz, is designed to reduce mutual coupling between elements in order to improve performance. This is critical for enabling reliable communication in MIMO systems. The antenna design includes the arrangement of two radiating elements in close proximity edge to edge at different distances. This arrangement allows the antenna to attain high gain while maintaining a compact structure, making it suitable for integration into small form factor devices. The use of FR-4 substrate material further contributes to the antenna's compactness and cost-effectiveness. The proposed design effectively minimizes interference and maximizes diversity gain, as evidenced by low mutual coupling of - 23 dB at 3.5 GHz, envelope correlation coefficient below 0.001, and diversity gain exceeding 10 dB. These metrics are crucial for robust MIMO communication. Comprehensive evaluations that include S-parameters, diversity gain, radiation pattern, and total effective reflection coefficient evaluate the proposed design's performance across a variety of parameters. Overall, the proposed MIMO antenna design is a potential solution for 5G sub-6 GHz band applications, as it combines compactness, high performance, and compatibility with emerging wireless communication standards.