Optimal design of hydrogen-blended natural gas pipeline network considering separation systems

被引:0
|
作者
Gu, Shiya [1 ]
Bai, Yunhai [2 ,3 ]
Dong, Yachao [1 ]
Du, Jian [1 ]
机构
[1] Dalian Univ Technol, Inst Chem Proc Syst Engn, Sch Chem Engn, Dalian 116024, Liaoning, Peoples R China
[2] CNPC Chuanqing Drilling Engn Co Ltd, Drilling & Prod Technol Res Inst, Xian, Shaanxi, Peoples R China
[3] Natl Engn Lab Explorat & Dev Low Permeabil Oil & G, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
hydrogen infrastructure design; methane-hydrogen separation; mixed-integer nonlinear programming; pipeline network; superstructure-based optimization; POWER-TO-GAS; ENERGY-STORAGE; OPTIMIZATION; TRANSPORT; MEMBRANE; EMBRITTLEMENT; INTEGRATION; ADSORPTION; EXTRACTION; MIXTURES;
D O I
10.1002/aic.18648
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Blending hydrogen into existing natural gas pipelines is considered the most feasible choice for long-distance, large-scale hydrogen transportation in the early stage of hydrogen economy development. To integrate the optimization of hydrogen-blended natural gas pipeline network and subsequent hydrogen/natural gas separation process, this article presents a mixed-integer nonlinear programming model, aiming to minimize the total annual project net cost. To tackle the computational complexity resulting from the large-scale and nonlinear nature of practical design problems, a decomposition algorithm is tailored to the proposed model. Two case studies demonstrate that compared to stepwise model, the proposed pipeline-separation integrated model offers economic benefits and practical value, incorporating separation processes and satisfying constraints of hydrogen demand, pressure and blending ratio requirements, which achieves an economically optimal design for both pipeline transportation and separation systems, and provides a viable solution for the broader application of hydrogen-blended natural gas networks.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Research Status of Compatibility of Hydrogen-blended Natural Gas Pipeline
    Zhao, Qian
    Xing, Yunying
    Wang, Xiuyun
    Yang, Zhile
    Zhang, Lei
    Cailiao Daobao/Materials Reports, 2024, 38 (12):
  • [2] Research progresses on pipeline transportation of hydrogen-blended natural gas
    Li J.
    Su Y.
    Zhang H.
    Yu B.
    Natural Gas Industry, 2021, 41 (04) : 137 - 152
  • [3] Study progress on the pipeline transportation safety of hydrogen-blended natural gas
    Tian, Xiao
    Pei, Jingjing
    HELIYON, 2023, 9 (11)
  • [4] Leakage and diffusion behavior of a buried pipeline of hydrogen-blended natural gas
    Zhu, Jianlu
    Pan, Jun
    Zhang, Yixiang
    Li, Yuxing
    Li, He
    Feng, Hui
    Chen, Dongsheng
    Kou, Yimin
    Yang, Rui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (30) : 11592 - 11610
  • [5] Hydrogen embrittlement in hydrogen-blended natural gas transportation systems: A review
    Jia, Guanwei
    Lei, Mingyu
    Li, Mengya
    Xu, Weiqing
    Li, Rui
    Lu, Yanghui
    Cai, Maolin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (83) : 32137 - 32157
  • [6] Modeling and assessment of hydrogen-blended natural gas releases from buried pipeline
    Xia, Zhiheng
    Xu, Zhao-Dong
    Lu, Hongfang
    Peng, Haoyan
    Zang, Xulei
    Liu, Xinyu
    Wang, Xin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 90 : 230 - 245
  • [7] Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems Considering Hydrogen-Blended Transient Transportation Process
    Liu, Wenxin
    Fang, Jiakun
    Hu, Kewei
    Zhong, Zhiyao
    Ai, Xiaomeng
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2023, 38 : 1 - 17
  • [8] Research Progress on Hydrogen Embrittlement Behavior of Pipeline Steel in the Environment of Hydrogen-Blended Natural Gas
    Zhang J.-X.
    Wang C.-L.
    Liu C.-W.
    Hu Q.-H.
    Zhang R.
    Xu X.-S.
    Ju S.-X.
    Li Y.-X.
    Surface Technology, 2022, 51 (10): : 76 - 88
  • [9] CFD analysis of leakage and diffusion characteristics in the buried hydrogen-blended natural gas pipeline
    Liu, Xing
    Wang, Yi
    Liang, Yuejiu
    Li, Jingfa
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 60 : 354 - 368
  • [10] Diffusion characterization of hydrogen-blended natural gas leakage for buried pipeline based on simulation
    Chang, Wenjun
    Wang, Wenhe
    Guo, Youwei
    Wang, Linyuan
    Li, Zhiyong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 99 : 394 - 408