Almost nothing is known about the parity of the partition function p(n), which is conjectured to be random. Despite this expectation, Ono [10] surprisingly proved the existence of infinitely many linear dependence congruence relations modulo 4 for p(n), indicating that the parity of the partition function cannot be truly random. Answering a question of Ono, we explicitly exhibit the first examples of these relations which he proved theoretically exist. The first two relations invoke 131 (resp. 198) different discriminants D <= 24k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ D \le 24 k - 1 $$\end{document} for k=309\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k = 309 $$\end{document} (resp. k=312\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k = 312 $$\end{document}); new relations occur for k=316,317,319,321,322,326,& mldr;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k = 316,\, 317,\, 319,\, 321,\, 322,\, 326, \, \ldots $$\end{document}.