OCT5k: A dataset of multi-disease and multi-graded annotations for retinal layers

被引:0
|
作者
Arikan, Mustafa [1 ]
Willoughby, James [1 ]
Ongun, Sevim [1 ]
Sallo, Ferenc [2 ]
Montesel, Andrea [2 ]
Ahmed, Hend [3 ]
Hagag, Ahmed [1 ,4 ]
Book, Marius [5 ]
Faatz, Henrik [6 ]
Cicinelli, Maria Vittoria [7 ,8 ]
Fawzi, Amani A. [9 ]
Podkowinski, Dominika [10 ,11 ]
Cilkova, Marketa [4 ]
De Almeida, Diana Morais [2 ]
Zouache, Moussa [12 ]
Ramsamy, Ganesham [13 ]
Lilaonitkul, Watjana [14 ,15 ,16 ]
Dubis, Adam M. [1 ,12 ]
机构
[1] UCL, Inst Ophthalmol, London EC1V 9EL, England
[2] Univ Lausanne, Jules Gonin Eye Hosp, Dept Ophthalmol, Lausanne, Switzerland
[3] Univ Coll London Hosp NHS Fdn Trust, London, England
[4] Moorfields Eye Hosp NHS Fdn, NIHR Moorfields Biomed Res Ctr, London EC1V 2PD, England
[5] Augenzentrum Siegburg, Rare Retinal Dis Ctr, Siegburg, Germany
[6] St Franziskus Hosp Munster, Eye Ctr, Munster, Germany
[7] IRCCS San Raffaele Sci Inst, Dept Ophthalmol, Milan, Italy
[8] Univ Vita Salute San Raffaele, Sch Med, Milan, Italy
[9] Northwestern Univ, Med Sch, Chicago, IL USA
[10] Kepler Univ Clin, Dept Ophthalmol, Linz, Austria
[11] Hanusch Hosp, Vienna Inst Res Ocular Surg VIROS, Vienna, Austria
[12] Univ Utah, Dept Ophthalmol & Visual Sci, Salt Lake City, UT USA
[13] West Midlands NHS Trust, London, England
[14] UCL, Global Business Sch Hlth, London WC1E 6BT, England
[15] Hlth Data Res UK HDR UK, London NW1 2BE, England
[16] UCL, Inst Hlth Informat, London NW1 2DA, England
基金
美国国家卫生研究院; 英国工程与自然科学研究理事会;
关键词
OPTICAL COHERENCE TOMOGRAPHY; AUTOMATIC SEGMENTATION; MACULAR DEGENERATION; IMAGES; EXTRACTION; FRAMEWORK; PATHOLOGY; DISEASES; NETWORK;
D O I
10.1038/s41597-024-04259-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Publicly available open-access OCT datasets for retinal layer segmentation have been limited in scope, often being small in size, specific to a single disease, or containing only one grading. This dataset improves upon this with multi-grader and multi-disease labels for training machine learning-based algorithms. The proposed dataset covers three subsets of scans (Age-related Macular Degeneration, Diabetic Macular Edema, and healthy) and annotations for two types of tasks (semantic segmentation and object detection). This dataset compiled 5016 pixel-wise manual labels for 1672 OCT scans featuring 5 layer boundaries for three different disease classes to support development of automatic techniques. A subset of data (566 scans across 9 classes of disease biomarkers) was subsequently labeled for disease features for 4698 bounding box annotations. To minimize bias, images were shuffled and distributed among graders. Retinal layers were corrected, and outliers identified using the interquartile range (IQR). This step was iterated three times, improving layer annotations' quality iteratively, ensuring a reliable dataset for automated retinal image analysis.
引用
收藏
页数:11
相关论文
共 19 条
  • [1] Retinal Fundus Multi-Disease Image Dataset (RFMiD): A Dataset for Multi-Disease Detection Research
    Pachade, Samiksha
    Porwal, Prasanna
    Thulkar, Dhanshree
    Kokare, Manesh
    Deshmukh, Girish
    Sahasrabuddhe, Vivek
    Giancardo, Luca
    Quellec, Gwenole
    Meriaudeau, Fabrice
    DATA, 2021, 6 (02) : 1 - 14
  • [2] Retinal Fundus Multi-Disease Image Dataset (RFMiD) 2.0: A Dataset of Frequently and Rarely Identified Diseases
    Panchal, Sachin
    Naik, Ankita
    Kokare, Manesh
    Pachade, Samiksha
    Naigaonkar, Rushikesh
    Phadnis, Prerana
    Bhange, Archana
    DATA, 2023, 8 (02)
  • [3] Multi-disease Detection in Retinal Images Guided by Disease Causal Estimation
    Xie, Jianyang
    Chen, Xiuju
    Zhao, Yitian
    Meng, Yanda
    Zhao, He
    Anh Nguyen
    Li, Xiaoxin
    Zheng, Yalin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT I, 2024, 15001 : 743 - 753
  • [4] RFMiD: Retinal Image Analysis for multi-Disease Detection challenge
    Pachade, Samiksha
    Porwal, Prasanna
    Kokare, Manesh
    Deshmukh, Girish
    Sahasrabuddhe, Vivek
    Luo, Zhengbo
    Han, Feng
    Sun, Zitang
    Li, Qihan
    Kamata, Sei-ichiro
    Ho, Edward
    Wang, Edward
    Sivajohan, Asaanth
    Youn, Saerom
    Lane, Kevin
    Chun, Jin
    Wang, Xinliang
    Gu, Yunchao
    Lu, Sixu
    Oh, Young-tack
    Park, Hyunjin
    Lee, Chia-Yen
    Yeh, Hung
    Cheng, Kai-Wen
    Wang, Haoyu
    Ye, Jin
    He, Junjun
    Gu, Lixu
    Mueller, Dominik
    Soto-Rey, Inaki
    Kramer, Frank
    Arai, Hidehisa
    Ochi, Yuma
    Okada, Takami
    Giancardo, Luca
    Quellec, Gwenole
    Meriaudeau, Fabrice
    MEDICAL IMAGE ANALYSIS, 2025, 99
  • [5] Multi-Scale Learning with Sparse Residual Network for Explainable Multi-Disease Diagnosis in OCT Images
    Bui, Phuoc-Nguyen
    Le, Duc-Tai
    Bum, Junghyun
    Kim, Seongho
    Song, Su Jeong
    Choo, Hyunseung
    BIOENGINEERING-BASEL, 2023, 10 (11):
  • [6] Unraveling the complexity: deep learning for imbalanced retinal lesion detection and multi-disease identification
    Alfonso-Francia, Gendry
    Pedraza-Ortega, Jesus Carlos
    Toledano-Ayala, Manuel
    Aceves-Fernandez, Marco Antonio
    Ko, Seok-Bum
    Tovar-Arriaga, Saul
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2023, 13 (01):
  • [7] ScLNet: A cornea with scleral lens OCT layers segmentation dataset and new multi-task model
    Cao, Yang
    Yu, Xiang Le
    Yao, Han
    Jin, Yue
    Lin, Kuangqing
    Shi, Ce
    Cheng, Hongling
    Lin, Zhiyang
    Jiang, Jun
    Gao, Hebei
    Shen, Meixiao
    HELIYON, 2024, 10 (13)
  • [8] Retinal multi-disease classification using the varices feature-based dual-channel network
    Lingling Fang
    Huan Qiao
    Multimedia Tools and Applications, 2024, 83 : 42629 - 42644
  • [9] Automatic multi-disease classification on retinal images using multilevel glowworm swarm convolutional neural network
    Chavan R.
    Pete D.
    Journal of Engineering and Applied Science, 2024, 71 (01):
  • [10] Retinal multi-disease classification using the varices feature-based dual-channel network
    Fang, Lingling
    Qiao, Huan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (14) : 42629 - 42644