Positive solutions for a Kirchhoff type problem with critical growth via nonlinear Rayleigh quotient

被引:0
|
作者
Figueiredo, Giovany M. [1 ]
Lima, Eduardo D. [2 ]
Silva, Edcarlos D. [2 ]
Oliveira Junior, Jose C. [3 ]
机构
[1] Univ Brasilia UnB, Brasilia, DF, Brazil
[2] Univ Fed Goias UFG, Goiania, Go, Brazil
[3] Univ Fed Norte Tocantins UFNT, Araguaina, TO, Brazil
关键词
ELLIPTIC-EQUATIONS; EXISTENCE; MULTIPLICITY;
D O I
10.1007/s00526-024-02861-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present work we establish the existence and multiplicity of positive solutions for a critical elliptic problem in the whole space RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>N$$\end{document}. The main feature here is to treat a Kirchhoff-type elliptic problem where the nonlinearity is critical and defines a sign-changing function. Our approach relies on the minimization method applied to the Nehari manifold together with the nonlinear Rayleigh quotient method. Here, we use the fibering maps associated with the energy functional which exhibits degenerate points under suitable values on the two parameters within the nonlinearity. This difficulty does not allow us to apply the Lagrange Multipliers Theorem in general. Furthermore, our nonlinearity does not satisfy the famous Ambrosetti-Rabinowitz condition. Our main contribution relies on restoring the strong convergence and compactness results from the Sobolev spaces into the Lebesgue spaces. Here, we establish also some nonexistence results under specific assumptions on the nonlinearity by using a Pohozaev identity.
引用
收藏
页数:49
相关论文
共 50 条
  • [1] Positive solutions for Kirchhoff elliptic problems via Rayleigh quotient in the whole RN
    Figueiredo, Giovany M.
    Lima, Eduardo D.
    Silva, Edcarlos D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 518 (01)
  • [2] Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth
    Wang, Jun
    Tian, Lixin
    Xu, Junxiang
    Zhang, Fubao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (07) : 2314 - 2351
  • [3] Multiplicity of concentrating positive solutions for nonlinear Kirchhoff type problems with critical growth
    Zhang, Hui
    Zhang, Fubao
    Xu, Junxiang
    APPLICABLE ANALYSIS, 2021, 100 (15) : 3276 - 3297
  • [4] Multiple positive solutions for a Kirchhoff type problem with a critical nonlinearity
    Lei, Chun-Yu
    Liu, Gao-Sheng
    Guo, Liu-Tao
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 31 : 343 - 355
  • [5] Nondegeneracy of positive solutions to a Kirchhoff problem with critical Sobolev growth
    Li, Gongbao
    Xiang, Chang-Lin
    APPLIED MATHEMATICS LETTERS, 2018, 86 : 270 - 275
  • [6] Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument
    Figueiredo, Giovany M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (02) : 706 - 713
  • [7] Multiplicity of Solutions for A Semilinear Elliptic Problem Via Generalized Nonlinear Rayleigh Quotient
    M. L. M. Carvalho
    Edcarlos D. Silva
    C. Goulart
    M. L. Silva
    Bulletin of the Brazilian Mathematical Society, New Series, 2024, 55
  • [8] Multiplicity of Solutions for A Semilinear Elliptic Problem Via Generalized Nonlinear Rayleigh Quotient
    Carvalho, M. L. M.
    Silva, Edcarlos D.
    Goulart, C.
    Silva, M. L.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (01):
  • [9] Existence and multiplicity of solutions for Kirchhoff elliptic problems with nondegenerate points via nonlinear Rayleigh quotient in RN
    Silva, Edcarlos D.
    Lima, Eduardo D.
    Oliveira Junior, Jose C.
    ANALYSIS AND APPLICATIONS, 2025, 23 (03) : 307 - 358
  • [10] Multiple positive solutions to a Kirchhoff type problem involving a critical nonlinearity
    Zhong, Xiao-Jing
    Tang, Chun-Lei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (12) : 2865 - 2877