Trichosanthes Cucumerina Derived Activated Carbon: The Potential Electrode material for High Energy Symmetric Supercapacitor

被引:0
|
作者
Joseph, Anit [1 ]
Mathew, Arshitha [1 ]
Thomas, Tiju [1 ]
机构
[1] Indian Inst Technol Madras, Dept Met & Mat Engn, Chennai 600036, India
来源
CHEMNANOMAT | 2024年 / 10卷 / 12期
关键词
Snake gourd pericarp; Activated carbon; Symmetric supercapacitor; H2SO4; electrolyte; Energy density; POROUS CARBON; GRAPHENE; BIOCARBON;
D O I
10.1002/cnma.202400112
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High surface area porous activated carbons obtained from sustainable biomass are excellent functional materials for energy storage applications. This is the first report on snake gourd (Trichosanthes cucumerina) pericarp as a raw material of activated carbon and supercapacitor electrode material. Herein, a simple KOH activation and carbonisation method is used. The obtained SGC900 sample has a surface area of 1841 m(2)/g and an average pore volume of 0.52 cm(3)/g. SGC900 based supercapacitor exhibits good electrochemical storage capacity in 1 M H2SO4 with a specific capacitance of 206 F/g at 1 A/g. The symmetric device delivered an energy density of 11 Wh/kg at a power density of 1.6 kW/kg. It provides a series resistance (R-s) of 1.2 Omega and a charge transfer resistance R-ct of 1.9 Omega. Furthermore, the device retains 95 % of capacitance over 5000 cycles. This work presents an easy and feasible approach for producing value-added activated carbon from sustainable biomass, potentially used in high-performance energy storage.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Pyrolytic cyanobacteria derived activated carbon as high performance electrode in symmetric supercapacitor
    Wang, Keliang
    Cao, Yuhe
    Wang, Xiaomin
    Fan, Qihua
    Gibbons, William
    Johnson, Tylor
    Luo, Bing
    Gu, Zhengrong
    ENERGY, 2016, 94 : 666 - 671
  • [2] Orange peel derived activated carbon for supercapacitor electrode material
    Arvind Singh
    Animesh K. Ojha
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [3] Orange peel derived activated carbon for supercapacitor electrode material
    Singh, Arvind
    Ojha, Animesh K.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (11)
  • [4] Corncob-Derived Activated Carbon as Electrode Material for High-Performance Supercapacitor
    Dong, Lili
    Pan, Chenghao
    Ji, Yongfeng
    Ren, Suxia
    Lei, Tingzhou
    MATERIALS, 2024, 17 (17)
  • [5] Lignin-Derived Activated Carbon as Electrode Material for High-Performance Supercapacitor
    Pan, Chenghao
    Ji, Yongfeng
    Ren, Suxia
    Lei, Tingzhou
    Dong, Lili
    MOLECULES, 2025, 30 (01):
  • [6] Effects of the physisorption properties of human hair-derived activated carbon as a potential electrode for symmetric supercapacitor
    Adam, Rashed A. M.
    Tarimo, Delvina J.
    Maphiri, Vusani M.
    Mirghni, Abdulmajid A.
    Fasakin, Oladepo
    Manyala, Ncholu
    MATERIALS FOR RENEWABLE AND SUSTAINABLE ENERGY, 2025, 14 (01)
  • [7] Activated carbon derived from coconut coir pith as high performance supercapacitor electrode material
    Sesuk, T.
    Tammawat, P.
    Jivaganont, P.
    Somton, K.
    Limthongkul, P.
    Kobsiriphat, W.
    JOURNAL OF ENERGY STORAGE, 2019, 25
  • [8] Activated Carbon Monolith Derived from Coconut Husk Fiber as Electrode Material for Supercapacitor Energy Storage
    Taer, Erman
    Naipospos, Verdy Manoto
    Taslim, Rika
    Agustino
    Apriwandi
    UNIVERSITAS RIAU INTERNATIONAL CONFERENCE ON SCIENCE AND ENVIRONMENT 2020 (URICSE-2020), 2020, 1655
  • [9] An activated carbon derived from tobacco waste for use as a supercapacitor electrode material
    Chen H.
    Guo Y.-C.
    Wang F.
    Wang G.
    Qi P.-R.
    Guo X.-H.
    Dai B.
    Yu F.
    Yu, Feng (yufeng05@mail.ipc.ac.cn), 1600, Institute of Metal Research Chinese Academy of Sciences (32): : 592 - 599
  • [10] An activated carbon derived from tobacco waste for use as a supercapacitor electrode material
    Chen Hui
    Guo Yan-chuan
    Wang Fu
    Wang Gang
    Qi Pei-rong
    Guo Xu-hong
    Dai Bin
    Yu Feng
    NEW CARBON MATERIALS, 2017, 32 (06) : 592 - 599