Development of model for identifying homologous recombination deficiency (HRD) status of ovarian cancer with deep learning on whole slide images

被引:0
|
作者
Zhang, Ke [1 ]
Qiu, Youhui [2 ]
Feng, Songwei [1 ]
Yin, Han [1 ]
Liu, Qi [1 ]
Zhu, Yuxin [1 ]
Cui, Haoyu [2 ]
Wei, Xiaoying [3 ]
Wang, Guoqing [3 ]
Wang, Xiangxue [2 ]
Shen, Yang [1 ]
机构
[1] Southeast Univ, Zhongda Hosp, Sch Med, Dept Obstet & Gynaecol, Nanjing 210009, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Inst AI Med, Sch Artificial Intelligence, Nanjing, Peoples R China
[3] Southeast Univ, Zhongda Hosp, Sch Med, Dept Pathol, Nanjing, Peoples R China
关键词
Deep learning; Whole slide images (WSIs); Homologous recombination deficiency (HRD); Ovarian cancer; FEATURES;
D O I
10.1186/s12967-025-06234-7
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
BackgroundHomologous recombination deficiency (HRD) refers to the dysfunction of homologous recombination repair (HRR) at the cellular level. The assessment of HRD status has the important significance for the formulation of treatment plans, efficacy evaluation, and prognosis prediction of patients with ovarian cancer.ObjectivesThis study aimed to construct a deep learning-based classifier for identifying tumor regions from whole slide images (WSIs) and stratify the HRD status of patients with ovarian cancer (OC).MethodsThe deep learning models were trained on 205 H&E-stained sections which contained 205 ovarian cancer patients, 64 were found to have HRD status while 141 had homologous recombination proficiency (HRP) status from two institutions Memorial Sloan Kettering Cancer Center (MSKCC) and Zhongda Hospital, Southeast University. The framework includes tumor regions identification by UNet + + and subtypes of ovarian cancer classifier construction. Referring to the EasyEnsemble, we classified the HRP patients into three distributed subsets. These three subsets of HRP patients were combined with the HRD patients to establish three new training groups for subsequent model construction. The three models were integrated into a single model named Ensemble Model.ResultsThe UNet + + algorithm segmented tumor regions with 81.8% accuracy, 85.9% recall, 83.8% dice score and 68.3% IoU. The AUC of the Ensemble Model was 0.769 (Precision = 0.800, Recall = 0.727, F1-score = 0.762) in the study. The most discriminative features between HRD and HRP comprised S_mean_dln_obtuse_ratio, S_mean_dln_acute_ratio and mean_Graph_T-S_Betweenness_normed.ConclusionsThe models we constructed enables accurate discrimination between tumor and non-tumor tissues in ovarian cancer as well as the prediction of HRD status for patients with ovarian cancer.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Prediction of homologous recombination status with deep learning on breast cancer whole slide images
    Lazard, Tristan
    Bataillon, Guillaume
    Walter, Thomas
    Vincent Salomon, Anne
    M S-MEDECINE SCIENCES, 2023, 39 (12): : 926 - 928
  • [2] Artificial intelligence to predict homologous recombination deficiency in ovarian cancer from whole-slide histopathological images
    Frenel, Jean-Sebastien
    Bossard, Celine
    Rynkiewicz, Joseph
    Thomas, Florian
    Salhi, Yahia
    Salhi, Sanae
    Chetritt, Jerome
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [3] Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images
    Lazard, Tristan
    Bataillon, Guillaume
    Naylor, Peter
    Popova, Tatiana
    Bidard, Francois-Clement
    Stoppa-Lyonnet, Dominique
    Stern, Marc-Henri
    Decenciere, Etienne
    Walter, Thomas
    Vincent-Salomon, Anne
    CELL REPORTS MEDICINE, 2022, 3 (12)
  • [4] Homologous recombination deficiency (HRD) testing on ovarian cancer ascites: A feasibility study
    Ranghiero, A.
    Rocco, E. Guerini
    Rappa, A.
    Varcica, D.
    Taormina, S. V.
    Adorisio, R.
    Marinucci, L.
    Betella, I.
    Aletti, G.
    Colombo, N.
    Fusco, N.
    Casadio, C.
    Di Tonno, C.
    Barberis, M.
    ANNALS OF ONCOLOGY, 2023, 34 : S717 - S717
  • [5] Breast cancer whole genomes link homologous recombination deficiency (HRD) with therapeutic outcomes
    Zhao, Eric Y.
    Shen, Yaoqing
    Pleasance, Erin
    Kasaian, Katayoon
    Jones, Martin R.
    Ch'ng, Carolyn
    Reisle, Caralyn
    Eirew, Peter
    Mungall, Karen
    Thiessen, Nina
    Ma, Yussanne
    Fok, Alexandra
    Mungall, Andrew J.
    Zhao, Yongjun
    Moore, Richard
    Villa, Diego
    Shenkier, Tamara
    Lohrisch, Caroline
    Chia, Stephen
    Yip, Stephen
    Gelmon, Karen
    Lim, Howard
    Sun, Sophie
    Schrader, Kasmintan A.
    Young, Sean
    Karsan, Aly
    Roscoe, Robyn
    Laskin, Janessa
    Marra, Marco A.
    Jones, Steven J.
    CANCER RESEARCH, 2017, 77
  • [6] Clinical Utility of Homologous Recombination Deficiency (HRD) Profiling in Ovarian Cancer: An Indian Experience
    Bahadur, U.
    Ravichandran, A.
    Basu, S.
    Nayanala, S.
    Vishwanath, D.
    Muniyappa, N.
    Neelagandan, B. G. K.
    Ramkumar, A. N. J. A.
    Sajjad, S.
    Nair, R. H. J. J.
    Krishnan, G.
    Ramanathan, V. G. R. A.
    Chatterjee, A.
    Sridharan, S.
    Phalke, S.
    Veeramachaneni, V.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2023, 25 (11): : S106 - S106
  • [7] Homologous recombination deficiency (HRD) score and niraparib efficacy in high grade ovarian cancer
    Haluska, P.
    Timms, K. M.
    AlHilli, M.
    Wang, Y.
    Hartman, A. M.
    Jones, J.
    Gutin, A.
    Sangale, Z.
    Neff, C.
    Lynchbury, J.
    Rudolph-Owen, L.
    Becker, M. A.
    Agarwal, S.
    Wilcoxen, K. M.
    EUROPEAN JOURNAL OF CANCER, 2014, 50 : 72 - 73
  • [8] Deep-learning based prediction of homologous recombination deficiency (hrd) status from histological features in breast cancer; a research study
    Taylor-Weiner, Amaro
    Pedawi, Aryan
    Chui, Wan Fung
    Diao, James
    Wang, Jason
    Mountain, Victoria
    Glass, Benjamin
    Elliott, Hunter
    Wapinski, Ilan
    Montalto, Michael
    Khosla, Aditya
    Beck, Andrew H.
    CANCER RESEARCH, 2021, 81 (04)
  • [9] Validation of genotype array analysis for the assessment of homologous recombination deficiency (HRD) in epithelial ovarian cancer
    Schnaiter, Simon
    Schamschula, Esther
    Zschocke, Johannes
    Fiegl, Heidi
    Reimer, Daniel U.
    Zeimet, Alain
    Wimmer, Katharina
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 555 - 556
  • [10] HOMOLOGOUS RECOMBINATION DEFICIENCY TESTING IN ADVANCED OVARIAN CANCER: DESCRIPTION OF THE ENGOT HRD EUROPEAN INITIATIVE
    Pujade-Lauraine, E.
    Christinat, Y.
    D'incalci, M.
    Schouten, P.
    Buisson, A.
    Heukamp, L. C.
    Van Gorp, T.
    Kramer, C.
    Mckee, T.
    Marchini, S.
    Hahnen, E.
    Saintigny, P.
    Braicu, E. Ioana
    Vergote, I. B.
    Yaniz-Galende, E.
    Ray-Coquard, I.
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2021, 31 : A208 - A208