Molecular level insights on the pulsed electrochemical CO2 reduction

被引:1
|
作者
Ye, Ke [1 ]
Jiang, Tian-Wen [2 ]
Jung, Hyun Dong [3 ]
Shen, Peng [1 ]
Jang, So Min [3 ]
Weng, Zhe [4 ]
Back, Seoin [3 ]
Cai, Wen-Bin [2 ]
Jiang, Kun [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Interdisciplinary Res Ctr, Sch Mech Engn, Shanghai, Peoples R China
[2] Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat, Shanghai Key Lab Mol Catalysis & Innovat Mat, Dept Chem, Shanghai, Peoples R China
[3] Sogang Univ, Inst Emergent Mat, Dept Chem & Biomol Engn, Seoul, South Korea
[4] Tianjin Univ, Sch Chem Engn & Technol, State Key Lab Chem Engn, Nanoyang Grp, Tianjin, Peoples R China
基金
国家重点研发计划; 新加坡国家研究基金会;
关键词
CARBON-DIOXIDE; ELECTROREDUCTION; CONVERSION; ELECTRODE; MONOXIDE; CATHODE; SURFACE; CELL;
D O I
10.1038/s41467-024-54122-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrochemical CO2 reduction reaction (CO2RR) occurring at the electrode/electrolyte interface is sensitive to both the potential and concentration polarization. Compared to static electrolysis at a fixed potential, pulsed electrolysis with alternating anodic and cathodic potentials is an intriguing approach that not only reconstructs the surface structure, but also regulates the local pH and mass transport from the electrolyte side in the immediate vicinity of the cathode. Herein, via a combined online mass spectrometry investigation with sub-second temporal resolution and 1-dimensional diffusion profile simulations, we reveal that heightened surface CO2 concentration promotes CO2RR over H2 evolution for both polycrystalline Ag and Cu electrodes after anodic pulses. Moreover, mild oxidative pulses generate a roughened surface topology with under-coordinated Ag or Cu sites, delivering the best CO2-to-CO and CO2-to-C2+ performance, respectively. Surface-enhanced infrared absorption spectroscopy elucidates the potential dependence of *CO and *OCHO species on Ag as well as the gradually improved *CO consumption rate over under-coordinated Cu after oxidative pulses, directly correlating apparent CO2RR selectivity with dynamic interfacial chemistry at the molecular level. How pulsed electrolysis impacts the electrochemical CO2 reduction reaction remains unclear. Here, authors present a molecular-level picture on the complex interactions between cathode surfaces, adsorbates, and local reaction environment to elucidate the promotional effect of pulsed electrolysis.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Molecular tuning for electrochemical CO2 reduction
    Zhang, Jincheng
    Ding, Jie
    Liu, Yuhang
    Su, Chenliang
    Yang, Hongbin
    Huang, Yanqiang
    Liu, Bin
    JOULE, 2023, 7 (08) : 1700 - 1744
  • [2] Theoretical insights into the factors affecting the electrochemical reduction of CO2
    Mustafa, Azeem
    Lougou, Bachirou Guene
    Shuai, Yong
    Wang, Zhijiang
    Razzaq, Samia
    Zhao, Jiupeng
    Tan, Heping
    Sustainable Energy and Fuels, 2020, 4 (09): : 4352 - 4369
  • [3] Theoretical Insights into Heterogeneous (Photo)electrochemical CO2 Reduction
    Xu, Shenzhen
    Carter, Emily A.
    CHEMICAL REVIEWS, 2019, 119 (11) : 6631 - 6669
  • [4] Theoretical insights into the factors affecting the electrochemical reduction of CO2
    Mustafa, Azeem
    Lougou, Bachirou Guene
    Shuai, Yong
    Wang, Zhijiang
    Razzaq, Samia
    Zhao, Jiupeng
    Tan, Heping
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (09): : 4352 - 4369
  • [5] Molecular-Scale Insights into Electrochemical Reduction of CO2 on Hydrophobically Modified Cu Surfaces
    Mu, Shijia
    Li, Lei
    Zhao, Ruijuan
    Lu, Honglei
    Dong, Huilong
    Cui, Chunhua
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (40) : 47619 - 47628
  • [6] Pulse check: Potential opportunities in pulsed electrochemical CO2 reduction
    Casebolt, Rileigh
    Levine, Kelsey
    Suntivich, Jin
    Hanrath, Tobias
    JOULE, 2021, 5 (08) : 1987 - 2026
  • [7] Electrochemical CO2 reduction: Pulsed electrolysis through neutron lenses
    Capdevila-Cortada, Marcal
    NATURE CATALYSIS, 2025, 8 (02): : 95 - 95
  • [8] Mechanistic insights into the electrochemical reduction of CO2 to CO on Ni(salphen) complexes
    Realista, Sara
    Costa, Paulo J.
    Maia, Luisa B.
    Calhorda, Maria Jose
    Martinho, Paulo N.
    INORGANIC CHEMISTRY FRONTIERS, 2023, 10 (14) : 4175 - 4189
  • [9] Mechanistic Insights into the Electrochemical Reduction of CO2 to CO on Nanostructured Ag Surfaces
    Rosen, Jonathan
    Hutchings, Gregory S.
    Lu, Qi
    Rivera, Sean
    Zhou, Yang
    Vlachos, Dionisios G.
    Jiao, Feng
    ACS CATALYSIS, 2015, 5 (07): : 4293 - 4299
  • [10] Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces
    Rosen, Jonathan
    Jiao, Feng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250