Nonparametric Bayesian inferences on the skewed data using a Dirichlet process mixture model

被引:0
|
作者
Mostofi, Amin Ghalamfarsa [1 ]
Kharrati-Kopaei, Mahmood [1 ]
机构
[1] Shiraz Univ, Stat, Shiraz 7146713565, Fars, Iran
关键词
Dirichlet process; Gibbs sampler; Mixture of distributions; Skewness; Symmetry; SLASH DISTRIBUTIONS; DENSITY-ESTIMATION; SIMULATION;
D O I
10.1007/s00362-024-01658-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents a new mixture model that can be regarded as a modified version of the Dirichlet process normal mixture models. In this model, the component distribution depends on a parameter whose value affects directly the skewness of the population distribution. Unlike the usual normal mixture model, one can impose prior information on the skewness parameter and make inferences. A nonparametric Bayesian approach is proposed to make inferences about the parameters of the model, including mean, variance, mode, and skewness parameters. An example is given to illustrate the use of the proposed mixture model in testing symmetry and fitting a distribution to data. We also compare our proposed method with two existing methods in terms of mean squared error and mean integrated squared error of the predictive density estimation.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Nonparametric Bayesian Lifetime Data Analysis using Dirichlet Process Lognormal Mixture Model
    Cheng, Nan
    Yuan, Tao
    NAVAL RESEARCH LOGISTICS, 2013, 60 (03) : 208 - 221
  • [2] Nonparametric Bayesian modelling using skewed Dirichlet processes
    Iglesias, Pilar L.
    Orellana, Yasna
    Quintana, Fernando A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (03) : 1203 - 1214
  • [3] Dirichlet process mixture model based nonparametric Bayesian modeling and variational inference
    Fei, Zhengshun
    Liu, Kangling
    Huang, Bingqiang
    Zheng, Yongping
    Xiang, Xinjian
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3048 - 3051
  • [4] Nonparametric empirical Bayes for the Dirichlet process mixture model
    Jon D. McAuliffe
    David M. Blei
    Michael I. Jordan
    Statistics and Computing, 2006, 16 : 5 - 14
  • [5] Nonparametric bayesian based on mixture of dirichlet process in application of fault detection
    Luo, Lin
    Su, Hong-Ye
    Ban, Lan
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2015, 49 (11): : 2230 - 2236
  • [6] Nonparametric empirical Bayes for the Dirichlet process mixture model
    McAuliffe, JD
    Blei, DM
    Jordan, MI
    STATISTICS AND COMPUTING, 2006, 16 (01) : 5 - 14
  • [7] DIRICHLET-PROCESS-MIXTURE-BASED BAYESIAN NONPARAMETRIC METHOD FOR MARKOV SWITCHING PROCESS ESTIMATION
    Magnant, Clement
    Giremus, Audrey
    Grivel, Eric
    Ratton, Laurent
    Joseph, Bernard
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1969 - 1973
  • [8] A computational approach for full nonparametric Bayesian inference under Dirichlet process mixture models
    Gelfand, AE
    Kottas, A
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2002, 11 (02) : 289 - 305
  • [9] A Dirichlet Process Mixture Model for Spherical Data
    Straub, Julian
    Chang, Jason
    Freifeld, Oren
    Fisher, John W., III
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 930 - 938
  • [10] Bayesian Analysis for Accelerated Life Tests Using a Dirichlet Process Weibull Mixture Model
    Yuan, Tao
    Liu, Xi
    Ramadan, Saleem Z.
    Kuo, Yue
    IEEE TRANSACTIONS ON RELIABILITY, 2014, 63 (01) : 58 - 67