Statistical analysis of spatial patterns in tumor microenvironment images

被引:0
|
作者
Benimam, Mohamed M. [1 ]
Meas-Yedid, Vannary [1 ]
Mukherjee, Suvadip [1 ,5 ]
Frafjord, Astri [2 ,3 ]
Corthay, Alexandre [2 ,3 ,4 ]
Lagache, Thibault [1 ]
Olivo-Marin, Jean-Christophe [1 ]
机构
[1] Univ Paris Cite, BioImage Anal Unit, Inst Pasteur, CNRS,UMR 3691, Paris, France
[2] Oslo Univ Hosp, Dept Pathol, Tumor Immunol Lab, Rikshosp, Oslo, Norway
[3] Univ Oslo, Oslo, Norway
[4] Univ Oslo, Inst Basic Med Sci, Hybrid Technol Hub Ctr Excellence, Oslo, Norway
[5] KLA Corp, Ann Arbor, MI USA
关键词
COLOCALIZATION; MICROSCOPY; ANTIGEN; CELLS;
D O I
10.1038/s41467-025-57943-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advances in tissue labeling, imaging, and automated cell identification now enable the visualization of immune cell types in human tumors. However, a framework for analyzing spatial patterns within the tumor microenvironment (TME) is still lacking. To address this, we develop Spatiopath, a null-hypothesis framework that distinguishes statistically significant immune cell associations from random distributions. Using embedding functions to map cell contours and tumor regions, Spatiopath extends Ripley's K function to analyze both cell-cell and cell-tumor interactions. We validate the method with synthetic simulations and apply it to multi-color images of lung tumor sections, revealing significant spatial patterns such as mast cells accumulating near T cells and the tumor epithelium. These patterns highlight differences in spatial organization, with mast cells clustering near the epithelium and T cells positioned farther away. Spatiopath enables a better understanding of immune responses and may help identify biomarkers for patient outcomes.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Topological analysis of spatial transcriptomics reveals different spatial interaction patterns in tumor microenvironment of lung cancer
    Bae, Sungwoo
    Lee, Hyekyoung
    Na, Kwon Joong
    Lee, Dong Soo
    Choi, Hongyoon
    Kim, Young Tae
    CANCER RESEARCH, 2023, 83 (07)
  • [2] Statistical analysis of spatial structure in natural images
    Watt, R.
    Carlin, P.
    PERCEPTION, 1996, 25 : 44 - 44
  • [3] Establishment of Spatial Transcriptomics for Analysis of Tumor Microenvironment and Heterogeneity
    Nakayama, Jun
    Semba, Kentaro
    CANCER SCIENCE, 2018, 109 : 918 - 918
  • [4] Statistical analysis of spatial patterns of the heliozoanActinophrys sol
    M. Sakaguchi
    T. Suzaki
    Y. Shigenaka
    Protoplasma, 1997, 196 : 117 - 122
  • [5] Spatial modelling of the tumor microenvironment from multiplex immunofluorescence images: methods and applications
    Kumar, Gayatri
    Pandurengan, Renganayaki Krishna
    Parra, Edwin Roger
    Kannan, Kasthuri
    Haymaker, Cara
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [6] Spatial maps of hepatocellular carcinoma transcriptomes reveal spatial expression patterns in tumor immune microenvironment
    Wang, Yue-fan
    Yuan, Sheng-xian
    Jiang, Hui
    Li, Zhi-xuan
    Yin, Hao-zan
    Tan, Jian
    Dai, Zhi-hui
    Ge, Chun-mei
    Sun, Shu-han
    Yang, Fu
    THERANOSTICS, 2022, 12 (09): : 4163 - 4180
  • [7] Spatial Heterogeneity in the Tumor Microenvironment
    Yuan, Yinyin
    COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2016, 6 (08):
  • [8] Multi-omic spatial analysis of the tumor microenvironment in gliomas
    Klymyshyn, Dmytro
    Jain, Vaibhav
    Whaley, Lauren
    Hocke, Emily
    Ben Cheikh, Bassem
    Smith, Alan
    Abramson, Karen
    Nelson, Nadine
    Satterfield, Diane
    Thomas, Elizabeth
    Lopez, Giselle
    Hariharan, Seetha
    Brown, Michael
    Jhaveri, Niyati
    McLendon, Roger
    Ashley, David
    Waitkus, Matthew
    Gregory, Simon
    CANCER RESEARCH, 2024, 84 (06)
  • [9] SPATIAL ANALYSIS OF GENETIC HETEROGENEITY AND TUMOR MICROENVIRONMENT INTERACTIONS IN GLIOBLASTOMA
    Onubogu, Ugoma
    Salatino, Roberto
    Szentirmai, Oszkar
    Vaubel, Rachael
    Janiszewska, Michalina
    NEURO-ONCOLOGY, 2022, 24 : 287 - 287
  • [10] Statistical Indicators for the Analysis of Digitalized Brain Tumor Images
    Templ, Matthias
    Aklan, Semaguel
    Filzmoser, Peter
    Preusser, Matthias
    Hainfellner, Johannes A.
    AUSTRIAN JOURNAL OF STATISTICS, 2013, 42 (02) : 1 - 19