Polymeric composites based on PVA doped with TiO2, WO3, and Co3O4 are the subject of the study. A range of physicochemical techniques was used to examine the structure of PVA-based composites. A changing absorption edge for PVA is also seen in the optical studies; it begins at 3.8 eV and drops to 2.4 eV for the PVA-TiO2-WO3 combination. Furthermore, the indirect band gap for all composites doped with TiO2, WO3, and Co3O4 lowers, reaching 2.8 eV in the PVA-TiO2-WO3 composite. Pure PVA has the greatest value (5.7 eV). The refractive index, on the other hand, shows 1.67 in PVA and 2.08 in PVA-TiO2-WO3 composite. Additionally, the dielectric constant decreased from roughly 28 for PVA and PVA-TiO2-WO3- Co3O4 composite to less than 20 in PVA-TiO2-WO3, but increased to similar to 45 in PVA-TiO2 composite. PVA composites exhibited distinct behavior consistent with previous research, according to optical and dielectric measurements. As a result, the studied NCs offer a potentially helpful composition for optoelectronic applications.