Improved Crop Height Estimation of Green Gram and Wheat Using Sentinel-1 SAR Time Series and Machine Learning Algorithms

被引:1
|
作者
Jain, Sourabh [1 ]
Choudhary, Parv [1 ]
Maurya, Himanshu [1 ]
Mishra, Pooja [1 ]
机构
[1] Indian Inst Informat Technol Allahabad, Prayagraj, India
关键词
Synthetic aperture radar; Crop height; Green gram; Wheat; Machine learning regressors; POLARIZATION; RETRIEVAL; SCHEME;
D O I
10.1007/s12524-024-02028-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Crop height is an important agronomic indicator that plays a crucial role in assessing production levels, providing essential information about the crop health. This study demonstrates the application of machine learning models for estimating crop height of green gram and wheat using dual-polarimetric Sentinel-1 Synthetic Aperture Radar (SAR) datasets. Multi-temporal Sentinel-1A dual pol data obtained over agricultural areas in India during the green gram and wheat growing seasons in 2023 and 2024, along with comprehensive ground truth surveys. Fifteen key dual-polarimetric SAR observables were extracted and evaluated for their sensitivity to crop height in both crops. The most influential parameters identified for each crop were subsequently used as input features in several machine learning models. Results indicate that Random Forest Regressor (RFR) and Extreme Gradient Boosting (XGBoost) models outperformed other models in estimating crop height. Specifically, for green gram, XGBoost (R2=0.98\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {R}<^>{2}= 0.98$$\end{document}, RMSE = 2.5 cm) and RFR (R2=0.85\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {R}<^>{2} = 0.85$$\end{document}, RMSE = 6.38 cm) demonstrated high modeling accuracy. For wheat, RFR achieved a high modeling accuracy (R2=0.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {R}<^>{2} = 0.8$$\end{document}, RMSE = 12.87 cm). These findings underscore the use of Sentinel-1 SAR data for precise crop height retrieval, suggesting its potential for operational applications.
引用
收藏
页码:2887 / 2899
页数:13
相关论文
共 50 条
  • [1] CROP HEIGHT ESTIMATION OF WHEAT USING SENTINEL-1 SATELLITE IMAGERY: PRELIMINARY RESULTS
    Narin, O. G.
    Bayik, C.
    Sekertekin, A.
    Madenoglu, S.
    Pinar, M. O.
    Abdikan, S.
    Sanli, F. Balik
    8TH INTERNATIONAL CONFERENCE ON GEOINFORMATION ADVANCES, GEOADVANCES 2024, VOL. 48-4, 2024, : 267 - 273
  • [2] EXTENT AND DEPTH OF FLOODING USING SAR SENTINEL-1 AND MACHINE LEARNING ALGORITHMS
    Soria-Ruiz, Jesus
    Fernandez-Ordonez, Y. M.
    Ambrosio-Ambrosio, J. P.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2246 - 2249
  • [3] Synergetic Use of Sentinel-1 and Sentinel-2 Data for Wheat-Crop Height Monitoring Using Machine Learning
    Nduku, Lwandile
    Munghemezulu, Cilence
    Mashaba-Munghemezulu, Zinhle
    Ratshiedana, Phathutshedzo Eugene
    Sibanda, Sipho
    Chirima, Johannes George
    AGRIENGINEERING, 2024, 6 (02): : 1093 - 1116
  • [4] Deriving Wheat Crop Productivity Indicators Using Sentinel-1 Time Series
    Vavlas, Nikolaos-Christos
    Waine, Toby W.
    Meersmans, Jeroen
    Burgess, Paul J.
    Fontanelli, Giacomo
    Richter, Goetz M.
    REMOTE SENSING, 2020, 12 (15)
  • [5] Estimation of winter wheat crop growth parameters using time series Sentinel-1A SAR data
    Kumar, P.
    Prasad, R.
    Gupta, D. K.
    Mishra, V. N.
    Vishwakarma, A. K.
    Yadav, V. P.
    Bala, R.
    Choudhary, A.
    Avtar, R.
    GEOCARTO INTERNATIONAL, 2018, 33 (09) : 942 - 956
  • [6] Determining Effective Temporal Windows for Rapeseed Detection Using Sentinel-1 Time Series and Machine Learning Algorithms
    Maleki, Saeideh
    Baghdadi, Nicolas
    Najem, Sami
    Dantas, Cassio Fraga
    Bazzi, Hassan
    Ienco, Dino
    REMOTE SENSING, 2024, 16 (03)
  • [7] Improved LSTM Model for Boreal Forest Height Mapping Using Sentinel-1 Time Series
    Ge, Shaojia
    Su, Weimin
    Gu, Hong
    Rauste, Yrjo
    Praks, Jaan
    Antropov, Oleg
    REMOTE SENSING, 2022, 14 (21)
  • [8] Spatio-Temporal Estimation of Rice Height Using Time Series Sentinel-1 Images
    Yang, Huijin
    Li, Heping
    Wang, Wei
    Li, Ning
    Zhao, Jianhui
    Pan, Bin
    REMOTE SENSING, 2022, 14 (03)
  • [9] Crop Health Assessment Using Sentinel-1 SAR Time Series Data in a Part of Central India
    Kaushik S.K.
    Mishra V.N.
    Punia M.
    Diwate P.
    Sivasankar T.
    Soni A.K.
    Remote Sensing in Earth Systems Sciences, 2021, 4 (4) : 217 - 234
  • [10] Crop Classification Based on Temporal Information Using Sentinel-1 SAR Time-Series Data
    Xu, Lu
    Zhang, Hong
    Wang, Chao
    Zhang, Bo
    Liu, Meng
    REMOTE SENSING, 2019, 11 (01)