Early prediction of neoadjuvant therapy response in breast cancer using MRI-based neural networks: data from the ACRIN 6698 trial and a prospective Chinese cohort

被引:0
|
作者
Du, Siyao [1 ]
Xie, Wanfang [2 ,3 ]
Gao, Si [1 ]
Zhao, Ruimeng [1 ]
Wang, Huidong [7 ]
Tian, Jie [2 ,3 ]
Liu, Jiangang [2 ,3 ,4 ]
Liu, Zhenyu [5 ,6 ]
Zhang, Lina [1 ,7 ]
机构
[1] China Med Univ, Dept Radiol, Hosp 1, Shenyang 110001, Liaoning, Peoples R China
[2] Beihang Univ, Sch Engn Med, Beijing 100191, Peoples R China
[3] Beihang Univ, Key Lab Big Data Based Precis Med, Minist Ind & Informat Technol Peoples Republ China, Beijing 100191, Peoples R China
[4] Beijing Engn Res Ctr Cardiovasc Wisdom Diag & Trea, Beijing 100029, Peoples R China
[5] Chinese Acad Sci, Inst Automat, Key Lab Mol Imaging, Beijing 100190, Peoples R China
[6] Univ Chinese Acad Sci, Beijing 100080, Peoples R China
[7] China Med Univ, Dept Radiol, Affiliated Hosp 4, Shenyang 110165, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Breast cancer; Multiparametric MRI; Neoadjuvant therapy; Pathological complete response; Longitudinal radiomics; Deep learning; CHEMOTHERAPY; RADIOMICS;
D O I
10.1186/s13058-025-02009-6
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Early prediction of treatment response to neoadjuvant therapy (NAT) in breast cancer patients can facilitate timely adjustment of treatment regimens. We aimed to develop and validate a MRI-based enhanced self-attention network (MESN) for predicting pathological complete response (pCR) based on longitudinal images at the early stage of NAT. Methods Two imaging datasets were utilized: a subset from the ACRIN 6698 trial (dataset A, n = 227) and a prospective collection from a Chinese hospital (dataset B, n = 245). These datasets were divided into three cohorts: an ACRIN 6698 training cohort (n = 153) from dataset A, an ACRIN 6698 test cohort (n = 74) from dataset A, and an external test cohort (n = 245) from dataset B. The proposed MESN allowed for the integration of multiple timepoint features and extraction of dynamic information from longitudinal MR images before and after early-NAT. We also constructed the Pre model based on pre-NAT MRI features. Clinicopathological characteristics were added to these image-based models to create integrated models (MESN-C and Pre-C), and their performance was evaluated and compared. Results The MESN-C yielded area under the receiver operating characteristic curve (AUC) values of 0.944 (95% CI: 0.906 - 0.973), 0.903 (95%CI: 0.815 - 0.965), and 0.861 (95%CI: 0.811 - 0.906) in the ACRIN 6698 training, ACRIN 6698 test and external test cohorts, respectively, which were significantly higher than those of the clinical model (AUC: 0.720 [95%CI: 0.587 - 0.842], 0.738 [95%CI: 0.669 - 0.796] for the two test cohorts, respectively; p < 0.05) and Pre-C (AUC: 0.697 [95%CI: 0.554 - 0.819], 0.726 [95%CI: 0.666 - 0.797] for the two test cohorts, respectively; p < 0.05). High AUCs of the MESN-C maintained in the ACRIN 6698 standard (AUC = 0.853 [95%CI: 0.676 - 1.000]) and experimental (AUC = 0.905 [95%CI: 0.817 - 0.993]) subcohorts, and the interracial and external subcohort (AUC = 0.861 [95%CI: 0.811 - 0.906]). Moreover, the MESN-C increased the positive predictive value from 48.6 to 71.3% compared with Pre-C model, and maintained a high negative predictive value (80.4-86.7%). Conclusion The MESN-C using longitudinal multiparametric MRI after a short-term therapy achieved favorable performance for predicting pCR, which could facilitate timely adjustment of treatment regimens, increasing the rates of pCR and avoiding toxic effects. Trial registration Trial registration at https://www.chictr.org.cn/. Registration number: ChiCTR2000038578, registered September 24, 2020.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Diffusion-weighted MRI Findings Predict Pathologic Response in Neoadjuvant Treatment of Breast Cancer: The ACRIN 6698 Multicenter Trial
    Partridge, Savannah C.
    Zhang, Zheng
    Newitt, David C.
    Gibbs, Jessica E.
    Chenevert, Thomas L.
    Rosen, Mark A.
    Bolan, Patrick J.
    Marques, Helga S.
    Romanoff, Justin
    Cimino, Lisa
    Joe, Bonnie N.
    Umphrey, Heidi R.
    Ojeda-Fournier, Haydee
    Dogan, Basak
    Oh, Karen
    Abe, Hiroyuki
    Drukteinis, Jennifer S.
    Esserman, Laura J.
    Hylton, Nola M.
    RADIOLOGY, 2018, 289 (03) : 618 - 627
  • [2] Diffusion-weighted MRI findings Predict Pathologic Response in Neoadjuvant Treatment of Breast Cancer: The ACRIN 6698 Multicenter Trial
    Krome, Susanne
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2019, 191 (07): : 608 - 608
  • [3] Repeatability and Reproducibility of ADC Histogram Metrics from the ACRIN 6698 Breast Cancer Therapy Response Trial
    Newitt, David C.
    Amouzandeh, Ghoncheh
    Partridge, Savannah C.
    Marques, Helga S.
    Herman, Benjamin A.
    Ross, Brian D.
    Hylton, Nola M.
    Chenevert, Thomas L.
    Malyarenko, Dariya, I
    TOMOGRAPHY, 2020, 6 (02) : 177 - 185
  • [4] ACRIN 6698 trial Quantitative diffusion-weighted MRI to predict pathologic response in neoadjuvant chemotherapy treatment of breast cancer.
    Partridge, Savannah C.
    Zhang, Zheng
    Newitt, David C.
    Gibbs, Jessica E.
    Chenevert, Thomas L.
    Rosen, Mark Alan
    Bolan, Patrick J.
    Marques, Helga
    Esserman, Laura
    Hylton, Nola M.
    JOURNAL OF CLINICAL ONCOLOGY, 2017, 35
  • [5] Exploring breast cancer response prediction to neoadjuvant systemic therapy using MRI-based radiomics: A systematic review
    Granzier, R. W. Y.
    van Nijnatten, T. J. A.
    Woodruff, H. C.
    Smidt, M. L.
    Lobbes, M. B., I
    EUROPEAN JOURNAL OF RADIOLOGY, 2019, 121
  • [6] Multiparametric MRI-based radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer
    Mohamed, Rania M.
    Panthi, Bikash
    Adrada, Beatriz E.
    Boge, Medine
    Candelaria, Rosalind P.
    Chen, Huiqin
    Guirguis, Mary S.
    Hunt, Kelly K.
    Huo, Lei
    Hwang, Ken-Pin
    Korkut, Anil
    Litton, Jennifer K.
    Moseley, Tanya W.
    Pashapoor, Sanaz
    Patel, Miral M.
    Reed, Brandy
    Scoggins, Marion E.
    Son, Jong Bum
    Thompson, Alastair
    Tripathy, Debu
    Valero, Vicente
    Wei, Peng
    White, Jason
    Whitman, Gary J.
    Xu, Zhan
    Yang, Wei
    Yam, Clinton
    Ma, Jingfei
    Rauch, Gaiane M.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] Early prediction of residual cancer burden to neoadjuvant chemotherapy in breast cancer by longitudinal MRI-based multitask learning: A multicenter cohort study
    Li, W.
    Huang, Y.
    Zhu, T.
    Wang, K.
    ANNALS OF ONCOLOGY, 2023, 34 : S315 - S316
  • [8] Early Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer Sonography Using Siamese Convolutional Neural Networks
    Byra, Michal
    Dobruch-Sobczak, Katarzyna
    Klimonda, Ziemowit
    Piotrzkowska-Wroblewska, Hanna
    Litniewski, Jerzy
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (03) : 797 - 805
  • [9] MRI-Based Prediction of Recurrence-Free Survival in Breast Cancer Patients Early On in Neoadjuvant Chemotherapy
    Drukker, K.
    Li, H.
    Antropova, N.
    Edwards, A.
    Papaioannou, J.
    Giger, M.
    MEDICAL PHYSICS, 2017, 44 (06)
  • [10] Multicontrast MRI-based radiomics for the prediction of pathological complete response to neoadjuvant chemotherapy in patients with early triple negative breast cancer
    Angeline Nemeth
    Pierre Chaudet
    Benjamin Leporq
    Pierre-Etienne Heudel
    Fanny Barabas
    Olivier Tredan
    Isabelle Treilleux
    Agnès Coulon
    Frank Pilleul
    Olivier Beuf
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2021, 34 : 833 - 844