Innovative modified-net architecture: enhanced segmentation of deep vein thrombosis

被引:0
|
作者
Pavihaa Lakshmi B. [1 ]
Vidhya S. [1 ]
机构
[1] Vellore Institute of Technology,School of Electronics Engineering
关键词
D O I
10.1038/s41598-024-81703-5
中图分类号
学科分类号
摘要
A new era for diagnosing and treating Deep Vein Thrombosis (DVT) relies on precise segmentation from medical images. Our research introduces a novel algorithm, the Modified-Net architecture, which integrates a broad spectrum of architectural components tailored to detect the intricate patterns and variances in DVT imaging data. Our work integrates advanced components such as dilated convolutions for larger receptive fields, spatial pyramid pooling for context, residual and inception blocks for multiscale feature extraction, and attention mechanisms for highlighting key features. Our framework enhances precision of DVT region identification, attaining an accuracy of 98.92%, with a loss of 0.0269. The model also validates sensitivity 96.55%, specificity 96.70%, precision 98.61%, dice 97.48% and Intersection over Union (IoU) 95.10% offering valuable insights into DVT segmentation. Our framework significantly improves segmentation performance over traditional methods such as Convolutional Neural Network , Sequential, U-Net, Schematic. The management of DVT can be improved through enhanced segmentation techniques, which can improve clinical observation, treatment planning, and ultimately patient outcomes.
引用
收藏
相关论文
共 50 条
  • [1] Deep Attention V-Net Architecture for Enhanced Multiple Sclerosis Segmentation
    Nasheeda, V. P.
    Rajangam, Vijayarajan
    IEEE ACCESS, 2024, 12 : 110550 - 110562
  • [2] AID-U-Net: An Innovative Deep Convolutional Architecture for Semantic Segmentation of Biomedical Images
    Tashk, Ashkan
    Herp, Juergen
    Bjorsum-Meyer, Thomas
    Koulaouzidis, Anastasios
    Nadimi, Esmaeil S.
    DIAGNOSTICS, 2022, 12 (12)
  • [3] DEEP VEIN NET: DEEP VEIN THROMBOSIS IDENTIFICATION VIA SOOTY TERN OPTIMIZED DEEP LEARNING NETWORK
    Joseph, Bastin Rogers Cross
    Jebadurai, Immanuel Johnraja
    Paulraj, Getzi Jeba Leelipushpam
    Jebadurai, Jebaveerasingh
    Varuvel, Mulli Mary
    REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2024, 69 (01): : 120 - 120
  • [4] Modified U-NET Architecture for Segmentation of Skin Lesion
    Anand, Vatsala
    Gupta, Sheifali
    Koundal, Deepika
    Nayak, Soumya Ranjan
    Barsocchi, Paolo
    Bhoi, Akash Kumar
    SENSORS, 2022, 22 (03)
  • [5] Is there a place of contrast-enhanced ultrasonography in deep vein thrombosis?
    Stanescu, Dan A.
    MEDICAL ULTRASONOGRAPHY, 2011, 13 (04) : 265 - 266
  • [6] RetU-Net: An Enhanced U-Net Architecture for Retinal Lesion Segmentation
    Sundar, Sumod
    Sumathy, S.
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2023, 32 (04)
  • [7] Modified Double U-Net Architecture for Medical Image Segmentation
    Deb, Sagar Deep
    Jha, Rajib Kumar
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2023, 7 (02) : 151 - 162
  • [8] Attention V-Net: A Modified V-Net Architecture for Left Atrial Segmentation
    Liu, Xiaoli
    Yin, Ruoqi
    Yin, Jianqin
    APPLIED SCIENCES-BASEL, 2022, 12 (08):
  • [9] BU-Net: Brain Tumor Segmentation Using Modified U-Net Architecture
    Rehman, Mobeen Ur
    Cho, SeungBin
    Kim, Jee Hong
    Chong, Kil To
    ELECTRONICS, 2020, 9 (12) : 1 - 12
  • [10] Effect of deep vein thrombosis on ischaemia-modified albumin levels
    Mentese, A.
    Mentese, U.
    Turedi, S.
    Gunduz, A.
    Karahan, S. C.
    Topbas, M.
    Turan, A.
    Patan, T.
    Turkmen, S.
    Okur, G.
    Eminagaoglu, M. S.
    EMERGENCY MEDICINE JOURNAL, 2008, 25 (12) : 811 - 814