EAQECCs derived from constacyclic codes over finite non-chain rings

被引:0
|
作者
Wang, Liqi [1 ]
Zhang, Xinxin [1 ]
Zhu, Shixin [1 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Constacyclic codes; EAQECCs; Gray map; Finite non-chain rings; QUANTUM MDS CODES; CYCLIC CODES;
D O I
10.1007/s11128-024-04606-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement-assisted quantum error-correcting codes (EAQECCs) not only can boost the performance of stabilizer quantum error-correcting codes but also can be derived from arbitrary classical linear codes by loosing the self-orthogonal condition and using pre-shared entangled states between the sender and the receiver. It is a challenging work to construct optimal EAQECCs and determine the required number of pre-shared entangled states. Let Rt=Fq2+vFq2+v2Fq2+& ctdot;+vtFq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}_{t}=\mathbb {F}_{q<^>{2}}+v\mathbb {F}_{q<^>{2}}+v<^>{2}\mathbb {F}_{q<^>{2}}+\cdots +v<^>{t}\mathbb {F}_{q<^>{2}}$$\end{document}, where q is an odd prime power and vt+1=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v<^>{t+1}=1$$\end{document}. Based on the generalized Gray map that is provided from Rt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}_{t}$$\end{document} to Fq2t+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q<^>{2}}<^>{t+1}$$\end{document}, some new optimal EAQECCs are constructed from the Gray images of v-constacyclic codes over Rt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}_{t}$$\end{document}. Compared with the known ones, our codes have better parameters.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] New MDS EAQECCs from constacyclic codes over finite non-chain rings
    Li Lin
    Yaozong Zhang
    Xiaotong Hou
    Jian Gao
    Quantum Information Processing, 22
  • [2] New MDS EAQECCs from constacyclic codes over finite non-chain rings
    Lin, Li
    Zhang, Yaozong
    Hou, Xiaotong
    Gao, Jian
    QUANTUM INFORMATION PROCESSING, 2023, 22 (06)
  • [3] Hulls of constacyclic codes over finite non-chain rings and their applications in quantum codes construction
    Zhaoyang Tian
    Jian Gao
    Yun Gao
    Quantum Information Processing, 23
  • [4] Hulls of constacyclic codes over finite non-chain rings and their applications in quantum codes construction
    Tian, Zhaoyang
    Gao, Jian
    Gao, Yun
    QUANTUM INFORMATION PROCESSING, 2024, 23 (01)
  • [5] Self-Dual Constacyclic Codes over Finite Non-Chain Rings and Their Applications
    Gao J.
    Wang Y.-K.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (02): : 296 - 302
  • [6] Constacyclic codes over finite local Frobenius non-chain rings with nilpotency index 3
    Castillo-Guillen, C. A.
    Renteria-Marquez, C.
    Tapia-Recillas, H.
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 43 : 1 - 21
  • [7] Duals of constacyclic codes over finite local Frobenius non-chain rings of length 4
    Castillo-Guillen, C. A.
    Renteria-Marquez, C.
    Tapia-Recillas, H.
    DISCRETE MATHEMATICS, 2018, 341 (04) : 919 - 933
  • [8] Quantum and LCD codes from skew constacyclic codes over a finite non-chain ring
    Prakash, Om
    Verma, Ram Krishna
    Singh, Ashutosh
    QUANTUM INFORMATION PROCESSING, 2023, 22 (05)
  • [9] Quantum and LCD codes from skew constacyclic codes over a finite non-chain ring
    Om Prakash
    Ram Krishna Verma
    Ashutosh Singh
    Quantum Information Processing, 22
  • [10] Quantum and LCD codes from skew constacyclic codes over a general class of non-chain rings
    Rai, Pradeep
    Singh, Bhupendra
    Gupta, Ashok Ji
    QUANTUM INFORMATION PROCESSING, 2024, 23 (07)