Accounting for bias due to outcome data missing not at random: comparison and illustration of two approaches to probabilistic bias analysis: a simulation study

被引:0
|
作者
Emily Kawabata [1 ]
Daniel Major-Smith [2 ]
Gemma L. Clayton [1 ]
Chin Yang Shapland [2 ]
Tim P. Morris [1 ]
Alice R. Carter [2 ]
Alba Fernández-Sanlés [1 ]
Maria Carolina Borges [2 ]
Kate Tilling [3 ]
Gareth J. Griffith [1 ]
Louise A. C. Millard [2 ]
George Davey Smith [4 ]
Deborah A. Lawlor [1 ]
Rachael A. Hughes [2 ]
机构
[1] University of Bristol,MRC Integrative Epidemiology Unit
[2] Bristol Medical School,Population Health Sciences
[3] University of Bristol,undefined
[4] MRC Clinical Trials Unit at UCL,undefined
[5] MRC Unit for Lifelong Health and Ageing at University College London,undefined
关键词
Bayesian bias analysis; Inverse probability weighting; Missing not at random; Monte Carlo bias analysis; Multiple imputation; Probabilistic bias analysis; Sensitivity analysis; UK Biobank;
D O I
10.1186/s12874-024-02382-4
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 42 条
  • [1] Attrition Bias Related to Missing Outcome Data: A Longitudinal Simulation Study
    Lewin, Antoine
    Brondeel, Ruben
    Benmarhnia, Tarik
    Thomas, Frederique
    Chaix, Basile
    EPIDEMIOLOGY, 2018, 29 (01) : 87 - 95
  • [2] ACCOUNTING FOR BIAS IN SURVIVAL ANALYSIS DUE TO MISSING COVARIATE VALUES
    GLYNN, RJ
    FIELD, TS
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 1995, 141 (11) : S59 - S59
  • [3] Evaluation of bias and precision in methods of analysis for pragmatic trials with missing outcome data: a simulation study
    Royes Joseph
    Julius Sim
    Reuben Ogollah
    Martyn Lewis
    Trials, 14 (Suppl 1)
  • [4] Estimating the Bias in Meta Analysis Estimates for Continuous Data With Non-Random Missing Study Variance
    Idris, Nik Ruzni Nik
    MATEMATIKA, 2011, 27 (02) : 121 - 128
  • [5] plasmode simulation to address confounding bias due to missing data in a large electronic health records dataset
    Puzhko, Svetlana
    Bartlett, Gillian
    Schuster, Tibor
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2020, 29 : 388 - 388
  • [6] TWO APPROACHES TO EVALUATE MISSING CLINICAL OUTCOME ASSESSMENT RESPONSES: A SIMULATION STUDY
    Qin, S.
    Ma, J.
    Nelson, L.
    VALUE IN HEALTH, 2019, 22 : S319 - S319
  • [7] Bias in regression coefficient estimates when assumptions for handling missing data are violated: a simulation study
    van Kuijk, Sander M. J.
    Viechtbauer, Wolfgang
    Peeters, Louis L.
    Smits, Luc
    EPIDEMIOLOGY BIOSTATISTICS AND PUBLIC HEALTH, 2016, 13 (01)
  • [8] Bias of complete-case analysis of williams square crossover designs when data are missing not at random
    Sofia Bazakou
    Robin Henderson
    Linda Sharples
    John Matthews
    Trials, 16
  • [9] Bias of complete-case analysis of williams square crossover designs when data are missing not at random
    Bazakou, Sofia
    Henderson, Robin
    Sharples, Linda
    Matthews, John
    TRIALS, 2015, 16
  • [10] The M-Value: A Simple Sensitivity Analysis for Bias Due to Missing Data in Treatment Effect Estimates
    Mathur, Maya B.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2023, 192 (04) : 612 - 620