Nonlinear LiNbO3 Local Electric Field Enhancement Photonic Crystal with Static Visible and Dynamic Asymmetric Laser Protection

被引:0
|
作者
Xu, Guichuan [1 ,2 ]
Lu, Zhengang [1 ,2 ]
Yuan, Jing [1 ,2 ]
Tan, Jiubin [1 ,2 ]
机构
[1] Harbin Inst Technol, Ctr Ultraprecis Optoelect Instrument Engn, Harbin 150080, Peoples R China
[2] Minist Ind & Informat Technol, Harbin Inst Technol, Key Lab Ultraprecis Intelligent Instrumentat, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
laser protection; asymmetric transmission; nonlinear optical film; visible light transparency; LiNbO3 photonic crystal; NONRECIPROCAL TRANSMISSION;
D O I
10.1021/acsami.4c15589
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The rapid development of high-energy laser technology imposes heightened requirements on multifunctional laser protection. In this article, we report a study of static visible and dynamic asymmetric laser protection window, utilizing a one-dimensional photonic crystal comprising LiNbO3 and Nb2O5 defects fabricated by magnetron sputtering technique. The visible light transparency and asymmetric laser protection performance are attributed to photonic crystal energy band properties and significant local electric field enhancement. As 1064 nm laser energy levels are below 14.44 mJ/cm(2), the forward and backward incident transmittances are 75.63 and 77.68%, respectively. With an increase in laser energy to 91.62 mJ/cm(2), the forward and backward transmittances vary to 7.32 and 71.58% due to the combination of asymmetric electric field enhancement and the third-order nonlinear effect of LiNbO3, achieving dynamic asymmetric laser protection. Notably, the sample exhibits a lower optical protection threshold of 46.08 mJ/cm(2) compared to that of traditional optical protection devices. Furthermore, the sample attains an average transmittance of 65.96% within the visible light band. This work presents inspirations for the preparation of multifunctional laser protection optical windows and advanced optical components.
引用
收藏
页码:68648 / 68656
页数:9
相关论文
共 50 条
  • [1] Nonlinear LiNbO3 topological Tamm interface state photonic crystal with static visible and intelligent laser protection
    Lu, Zhengang
    Xu, Guichuan
    Yuan, Jing
    Tan, Jiubin
    SURFACES AND INTERFACES, 2024, 55
  • [2] Dynamic laser protection window based on a topological state photonic crystal of a nonlinear LiNbO3 interface
    Xu, Guichuan
    Lu, Zhengang
    Yuan, Jing
    Tan, Jiubin
    OPTICS LETTERS, 2024, 49 (24) : 7206 - 7209
  • [3] Influence of a Static Electric Field on the Dielectric Properties of LiNbO3
    A. V. Yatsenko
    S. M. Kostritskii
    Technical Physics, 2020, 65 : 622 - 626
  • [4] Influence of a Static Electric Field on the Dielectric Properties of LiNbO3
    Yatsenko, A. V.
    Kostritskii, S. M.
    TECHNICAL PHYSICS, 2020, 65 (04) : 622 - 626
  • [5] REEXAMINATION OF THE LOCAL ELECTRIC-FIELD GRADIENTS IN LINBO3
    DOUGLASS, DC
    PETERSON, GE
    MCBRIERTY, VJ
    PHYSICAL REVIEW B, 1989, 40 (16): : 10694 - 10703
  • [6] Experimental observation of electric-field poling in femtosecond laser carved LiNbO3 crystal
    Wang, Ying
    Zhang, Zhigang
    Ni, Xiaochang
    Yu, Jian
    Sang, Mei
    Ji, Lei
    Wang, Qingyue
    ADVANCED LASER TECHNOLOGIES 2005, PTS 1 AND 2, 2006, 6344
  • [7] Experimental study of electric-field poling in LiNbO3 crystal by femtosecond laser carving
    Wang, Ying
    Ni, Xiao-Chang
    Xue, Ying-Hong
    Ji, Lei
    Sang, Mei
    Yu, Jian
    Wang, Qing-Yue
    Zhang, Zhi-Gang
    Zhongguo Jiguang/Chinese Journal of Lasers, 2005, 32 (12): : 1688 - 1692
  • [8] Two-dimensional periodically poled LiNbO3 nonlinear photonic crystal
    Ni, PG
    Ma, BQ
    Cheng, BY
    Zhang, DZ
    ACTA PHYSICA SINICA, 2003, 52 (08) : 1925 - 1928
  • [9] LiNbO3 Nonlinear Photonic Crystal with 12-Fold Rotational Symmetry
    Ma Bo-Qin
    Ren Ming-Liang
    Ma Dong-Li
    Li Zhi-Yuan
    CHINESE PHYSICS LETTERS, 2013, 30 (06)
  • [10] Photonic Electric-Field Sensor Utilizing an Asymmetric Ti:LiNbO3 Mach-Zehnder Interferometer with a Dipole Antenna
    Jung, Hongsik
    FIBER AND INTEGRATED OPTICS, 2012, 31 (06) : 343 - 354