3D Printing of solvent-free PEO-Polyolefin solid polymer electrolyte by Fused Filament Fabrication

被引:0
|
作者
Bourseau, Felix [1 ,2 ]
Grugeon, Sylvie [1 ,2 ]
Lafont, Ugo [3 ]
Dupont, Loic [1 ,2 ,4 ]
机构
[1] Univ Picardie Jules Verne, UMR CNRS 7314, Hub Energie, Lab React & Chim Solides, 15 rue Baudelocque, F-80039 Amiens, France
[2] Reseau Stockage Electrochim Energie RS2E, FR CNRS 3459, Hub Energie, 15 rue Baudelocque, F-80039 Amiens, France
[3] European Space Technol Ctr, Noordwijk, Netherlands
[4] Univ Picardie Jules Verne, Plateforme Microscopie Elect PME, Hub Energie, F-80000 Amiens, France
关键词
3D printing; FFF; polymer electrolytes; Li-ion batteries; In-Space Manufacturing; solvent-free;
D O I
10.1080/17452759.2024.2409975
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
3D printing of energy storage systems is at the heart of In-Space Manufacturing strategy. Within this context, Li-ion polymer batteries printing through Fused Filament Fabrication (FFF) is envisaged. This study is devoted to optimising the extruded solid polymer electrolyte filament properties. As the poly(ethylene oxide) (PEO) - lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte offers the best Li+ conductivities but suffers from poor mechanical behaviour, poly(propylene) (PP) is added to ensure filament printability. An exhaustive investigation highlights the impact of the PEO molar weight and the LiTFSI and PP proportions. Fine-tuning these parameters alters molten phase viscosity, which affects the electrolyte morphology and ionic conductivity. Best formulations feature a co-continuous structure that provides effective mechanical reinforcement and exhibits the best ionic conductivity reported so far for an FFF-printed solvent-free polymer electrolyte of 1.2 x 10-4 S.cm-1 at 70 degrees C. Therefore, it opens the way towards polymer battery printing, on the Earth and in microgravity conditions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Fused Filament Fabrication: Gateway to 3D Printing
    Heiden, Paul
    MANUFACTURING ENGINEERING, 2020, 164 (04): : 24 - +
  • [2] 3D printing of solid polymer electrolytes by fused filament fabrication: challenges towards in-space manufacturing
    Bourseau, Felix
    Grugeon, Sylvie
    Lafont, Ugo
    Dupont, Loic
    JOURNAL OF PHYSICS-ENERGY, 2024, 6 (01):
  • [3] Methods to Reduce Energy and Polymer Consumption for Fused Filament Fabrication 3D Printing
    Harding, Owen James
    Griffiths, Christian Andrew
    Rees, Andrew
    Pletsas, Dimitrios
    POLYMERS, 2023, 15 (08)
  • [4] Tensile strength of commercial polymer materials for fused filament fabrication 3D printing
    Tanikella, Nagendra G.
    Wittbrodt, Ben
    Pearce, Joshua M.
    ADDITIVE MANUFACTURING, 2017, 15 : 40 - 47
  • [5] Hybrid solid electrolyte with the combination of LATP ceramic and PEO polymer by a solvent-free procedure
    Ma, Furui
    Liu, Yuxiang
    Du, Xuanru
    Lu, Qingqing
    SOLID STATE IONICS, 2024, 405
  • [6] Fused filament fabrication parameter adjustments for sustainable 3D printing
    Kechagias, John
    Chaidas, Dimitrios
    MATERIALS AND MANUFACTURING PROCESSES, 2023, 38 (08) : 933 - 940
  • [7] Novel thermosetting polymers for fused filament fabrication 3D printing
    Yang, Kejia
    Ranson, Victoria
    Archer, Wyatt
    Lund, Benjamin
    Voit, Walter
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [8] 3D printing of high density polyethylene by fused filament fabrication
    Schirmeister, Carl G.
    Hees, Timo
    Licht, Erik H.
    Muelhaupt, Rolf
    ADDITIVE MANUFACTURING, 2019, 28 : 152 - 159
  • [9] 3D Printing of Polypropylene Using the Fused Filament Fabrication Technique
    Silva, A. F.
    Carneiro, O. S.
    Gomes, R.
    PROCEEDINGS OF THE 20TH INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING (ESAFORM 2017), 2017, 1896
  • [10] 3D Printing of Solvent-Free Supramolecular Polymers
    Rupp, Harald
    Binder, Wolfgang H.
    FRONTIERS IN CHEMISTRY, 2021, 9