Oxidative Upcycling of Polyolefin Wastes into the Dynamically Cross-Linked Elastomer

被引:2
|
作者
Chang, Yinlong [1 ,2 ]
Xiao, Yangke [1 ,2 ]
Sun, Minghao [1 ,2 ]
Gao, Weiqiang [1 ,2 ]
Zhu, Liqian [1 ,2 ]
Wang, Qingyue [1 ,2 ]
Wang, Wen-Jun [1 ,2 ]
Li, Bo-Geng [1 ,2 ]
Liu, Pingwei [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Chem & Biol Engn, State Key Lab Chem Engn, Hangzhou 310058, Peoples R China
[2] Inst Zhejiang Univ Quzhou, Quzhou 324000, Peoples R China
基金
中国国家自然科学基金;
关键词
ROBUST; ABILITIES;
D O I
10.1021/acs.macromol.4c01869
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Oxidative cracking of polyolefins into functionalized molecules or oligomers promises the chemical upcycling of plastic wastes. In this work, we develop a novel approach to polyolefin waste upcycling that utilizes low-temperature oxidative cracking combined with dynamic cross-linking to produce recyclable elastomers. High-density polyethylene is oxidized into functionalized oligomers with end carboxyl groups at 110 degrees C, achieving tunable number-average molecular weights (M n) ranging from 1500 to 5500 Da at distributions (D) between 2.91 and 3.33. These oligomers with high crystallinity directly react with amorphous cis-polybutadiene containing pendant epoxy groups (an oxidized product of cis-polybutadiene) through esterification, forming a dynamically cross-linked elastomer. The elastomer displays a low glass transition temperature (T g) of approximately -100 degrees C while maintaining a melting point (T m) above 80 degrees C; it showcases a Young ' s modulus (E) of 12.0 +/- 0.4 MPa, elongation at break (epsilon) of 600 +/- 28%, tensile strength (sigma) of 16.4 +/- 0.8 MPa, tensile toughness (U T) of 46.0 +/- 3.5 MJ center dot m-3, and a good elasticity with 81.8% elastic recovery in a 10-cycle tensile test, even higher than that of commercial POEs such as POE-8150 of Dow Company. The dynamic ester-bond-based cross-linking enables the elastomer to be reprocessed. Our study introduces an efficient chemical upcycling process for polyolefin wastes, eliminating the need for tedious separation steps of cracking products.
引用
收藏
页码:9943 / 9949
页数:7
相关论文
共 50 条
  • [1] Vitrimers of polyolefin elastomer with physically cross-linked network
    Wei-Yu Wang
    Xiang-Jun Zha
    Rui-Ying Bao
    Kai Ke
    Zheng-Ying Liu
    Ming-Bo Yang
    Wei Yang
    Journal of Polymer Research, 2021, 28
  • [2] Vitrimers of polyolefin elastomer with physically cross-linked network
    Wang, Wei-Yu
    Zha, Xiang-Jun
    Bao, Rui-Ying
    Ke, Kai
    Liu, Zheng-Ying
    Yang, Ming-Bo
    Yang, Wei
    JOURNAL OF POLYMER RESEARCH, 2021, 28 (06)
  • [3] Dynamically Cross-Linked Polyolefin Elastomers with Highly Improved Mechanical and Thermal Performance
    Xiao, Yangke
    Liu, Pingwei
    Wang, Wen-Jun
    Li, Bo-Geng
    MACROMOLECULES, 2021, 54 (22) : 10381 - 10387
  • [4] CROSS-LINKED POLYOLEFIN FOAMS
    ALLEN, WM
    JOURNAL OF CELLULAR PLASTICS, 1984, 20 (01) : 69 - 72
  • [5] Preparation and properties of dynamically cross-linked olefinic thermoplastic elastomer/liquid crystal polymer composites
    Nagatani, A
    Washiya, H
    Matsumoto, M
    Ishihara, M
    Furukawa, M
    KOBUNSHI RONBUNSHU, 2005, 62 (05) : 214 - 220
  • [6] Hierarchical network relaxation of a dynamic cross-linked polyolefin elastomer for advanced reversible shape memory effect
    Xu, Zhao
    Meng, Sen
    Wei, Dun-Wen
    Bao, Rui-Ying
    Wang, Yu
    Ke, Kai
    Yang, Wei
    NANOSCALE, 2023, 15 (11) : 5458 - 5468
  • [7] RADIATION CROSS-LINKED POLYOLEFIN-INSULATED WIRE
    SANO, K
    ISHITANI, H
    RADIATION PHYSICS AND CHEMISTRY, 1985, 25 (4-6): : 849 - 854
  • [8] PROPERTIES OF CROSS-LINKED POLYOLEFIN-BASED MATERIALS
    CHODAK, I
    PROGRESS IN POLYMER SCIENCE, 1995, 20 (06) : 1165 - 1199
  • [9] RADIATION CROSS-LINKED POLYOLEFIN-INSULATED WIRE.
    Sano, K.
    Ishitani, H.
    1600, (25): : 4 - 6
  • [10] Modelling the Flow of Dynamically Cross-Linked Biopolymer Networks
    Boerma, Arjan E.
    Onck, Patrick R.
    van der Giessen, Erik
    Papanikolaou, Stefanos
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 338A - 338A