Optimal Strategies for Filament Orientation in Non-Planar 3D Printing

被引:0
|
作者
Atarihuana, Sebastian [1 ,2 ]
Fernández, Felipe [3 ]
Erazo, José [1 ,2 ]
Narváez, Mateo [1 ,2 ]
Hidalgo, Víctor [1 ,2 ,4 ]
机构
[1] Laboratorio de Mecánica Informática, Escuela Politécnica Nacional (EPN), Quito,170517, Ecuador
[2] Departamento de Ingeniería Mecánica, Escuela Politécnica Nacional (EPN), Quito,170517, Ecuador
[3] Departamento de Ingeniería Mecánica, Universidad San Francisco de Quito (USFQ), Quito,170901, Ecuador
[4] Carrera de Pedagogía Técnica de la Mecatrónica, Facultad de Filosofía, Letras y Ciencias de la Educación, Universidad Central del Ecuador (UCE), Quito,170129, Ecuador
关键词
Cutting - Failure analysis - Printing presses;
D O I
10.3390/pr12122811
中图分类号
学科分类号
摘要
The structural integrity and surface quality of parts produced using traditional fused deposition modeling depend on factors such as layer height, filament and build orientation, print speed, nozzle temperature, and, crucially for this study, both planar and non-planar slicing. Recent research on non-planar slicing techniques has shown significant improvements in surface smoothness and mechanical properties. Key approaches include non-planar slicing for 3-axis printers, adaptive slicing to optimize material placement in critical areas, and post-processing. However, current studies lack a comprehensive method for parameterizing filament direction across both planar and non-planar layers. This work presents an approach to generate optimal trajectories for planar and non-planar layers using contours derived from level set functions. The methodology demonstrates the advantages of non-planar printing, particularly with a filament orientation of 30° for inclined surfaces, ensuring better surface quality, uniformity, and structural integrity. This emphasizes the importance of trajectory planning and filament orientation in achieving high-quality prints on inclined geometries. This research highlights the necessity of a methodology that tailors filament paths based on the load-bearing requirements of each part, demonstrating its potential to enhance surface quality and structural performance, and further the advancement of the 3D printing industry. © 2024 by the authors.
引用
收藏
相关论文
共 50 条
  • [1] Non-planar granular 3D printing
    Barrak Darweesh
    Maria Paz Gutierrez
    Simon Schleicher
    Construction Robotics, 2023, 7 (3-4) : 291 - 306
  • [2] Benefits of Non-Planar Printing Strategies Towards Eco-Efficient 3D Printing
    Cendrero, Adrian Martinez
    Fortunato, Gabriele Maria
    Munoz-Guijosa, Juan Manuel
    De Maria, Carmelo
    Diaz Lantada, Andres
    SUSTAINABILITY, 2021, 13 (04) : 1 - 17
  • [3] Correction: Non-planar granular 3D printing
    Barrak Darweesh
    Maria Paz Gutierrez
    Simon Schleicher
    Construction Robotics, 2023, 7 (3-4) : 307 - 307
  • [4] TRAJECTORY PLANNING FOR CONFORMAL 3D PRINTING USING NON-PLANAR LAYERS
    Shembekar, Aniruddha V.
    Yoon, Yeo Jung
    Kanyuck, Alec
    Gupta, Satyandra K.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2018, VOL 1A, 2018,
  • [5] Digital design and parametric study of 3D concrete printing on non-planar surfaces
    Li, Shuai
    Nguyen-Xuan, H.
    Tran, Phuong
    AUTOMATION IN CONSTRUCTION, 2023, 145
  • [6] NON-PLANAR 3D PRINTED ELEMENTS ON TEXTILE SUBSTRATE USING A FUSED FILAMENT FABRICATION 3D PRINTER
    Muenks, Dominik
    Eckelmann, Luca
    Kyosev, Yordan
    AUTEX RESEARCH JOURNAL, 2023, 23 (04) : 495 - 503
  • [7] 3D printing technique for the development of non-planar electromagnetic bandgap structures for antenna applications
    Jun S.
    Sanz-Izquierdo B.
    Parker E.A.
    Electron. Lett., 3 (175-176): : 175 - 176
  • [8] 3D printing technique for the development of non-planar electromagnetic bandgap structures for antenna applications
    Jun, S.
    Sanz-Izquierdo, B.
    Parker, E. A.
    ELECTRONICS LETTERS, 2016, 52 (03) : 175 - U80
  • [9] 3D printing technique for the development of non-planar electromagnetic bandgap structures for antenna applications
    Sanz-Izquierdo, B. (b.sanz@kent.ac.uk), 1600, John Wiley and Sons Inc (52):
  • [10] 3D Printing in Non-planar Layers as a New Tool for Increasing the Quality of FDM Production
    Kascak, Jakub
    Kocisko, Marek
    Torok, Jozef
    Vodilka, Adrian
    ADVANCES IN MANUFACTURING IV, VOL 2, MANUFACTURING 2024, 2024, : 112 - 124