Efficient and stable perovskite solar cells based on insulating polymer modified ZnO nanoparticles

被引:0
|
作者
Fan, Pu [1 ]
Tian, Jianghao [1 ,2 ]
Wang, Kun [1 ,2 ]
Zheng, Ding [2 ]
Yu, Junsheng [1 ,2 ]
Russell, Thomas P. [3 ]
机构
[1] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst, Huzhou 313001, Peoples R China
[2] Univ Elect Sci & Technol China UESTC, Sch Optoelect Sci & Engn, State Key Lab Elect Thin Films & Integrated Device, Chengdu 610054, Peoples R China
[3] Univ Massachusetts Amherst, Polymer Sci & Engn Dept, 120 Governors Dr, Amherst, MA 01003 USA
基金
中国国家自然科学基金;
关键词
CATHODE BUFFER LAYER; LOW-TEMPERATURE; PHOTOVOLTAIC PERFORMANCE; POLY(VINYL ALCOHOL); GRAPHENE; FILMS; OXIDE;
D O I
10.1039/d4tc03821e
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, perovskite solar cells (PSCs) have achieved significant advancements in power conversion efficiency (PCE), with zinc oxide (ZnO) commonly used as an electron transport layer (ETL) due to its favorable properties. However, ZnO nanoparticles (NPs) often lead to poor-quality films, affecting electronic transmission and perovskite film growth, thereby limiting device performance. To address these issues, this study proposes a straightforward, cost-effective, and widely applicable strategy. By incorporating polyvinyl alcohol (PVA) into ZnO NPs, we achieved a denser, smoother, and more uniform ETL. This modification also optimizes the interface contact between the perovskite active layer and the ZnO NPs ETL. As a result, the PCE, short-circuit current density (JSC), and fill factor (FF) of PSCs with PVA-modified ETL improved significantly compared to the control devices, increasing from 17.59% to 19.89% and from 15.03% to 16.56% for CsFAPbI3 and MAPbI3 perovskite structures, respectively. Furthermore, the mixed ETL of PVA and ZnO NPs notably enhances the environmental stability of PSCs. This approach, combining an insulating polymer with ZnO NPs, offers a simple and economical pathway towards the commercialization of high-performance PSCs. This approach, combining an insulating polymer with ZnO NPs, offers a simple and economical pathway towards the commercialization of PSCs.
引用
收藏
页码:19219 / 19226
页数:8
相关论文
共 50 条
  • [1] Interface engineering via an insulating polymer for highly efficient and environmentally stable perovskite solar cells
    Wen, Xiaoru
    Wu, Jiamin
    Ye, Meidan
    Gao, Di
    Lin, Changjian
    CHEMICAL COMMUNICATIONS, 2016, 52 (76) : 11355 - 11358
  • [2] A helicene-based semiconducting polymer for stable and efficient perovskite solar cells
    He, Lifei
    Zhang, Yuyan
    Wei, Yuefang
    Cai, Yaohang
    Zhang, Jing
    Wang, Peng
    MATTER, 2023, 6 (11) : 4013 - 4031
  • [3] Efficient and Environmentally Stable Perovskite Solar Cells Based on ZnO Electron Collection Layer
    Song, Jiaxing
    Bian, Ji
    Zheng, Enqiang
    Wang, Xiao-Feng
    Tian, Wenjing
    Miyasaka, Tsutomu
    CHEMISTRY LETTERS, 2015, 44 (05) : 610 - 612
  • [4] Cerium-Oxide-Modified Anodes for Efficient and UV-Stable ZnO-Based Perovskite Solar Cells
    Meng, Ruiqian
    Feng, Xiaoxia
    Yang, Yiwei
    Lv, Xudong
    Cao, Jing
    Tang, Yu
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (14) : 13273 - 13278
  • [5] Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells
    Zuo, Lijian
    Guo, Hexia
    deQuilettes, Dane W.
    Jariwala, Sarthak
    De Marco, Nicholas
    Dong, Shiqi
    DeBlock, Ryan
    Ginger, David S.
    Dunn, Bruce
    Wang, Mingkui
    Yang, Yang
    SCIENCE ADVANCES, 2017, 3 (08):
  • [6] Efficient and stable perovskite solar cells based on mesoscopic architecture with nanoparticles additive treatment
    Mohammed, Mustafa K. A.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2022, 148
  • [7] A zwitterionic polymer as an interfacial layer for efficient and stable perovskite solar cells
    Zhou, Suyuan
    Zhu, Tao
    Zheng, Luyao
    Zhang, Dong
    Xu, Wenzhan
    Liu, Lei
    Cheng, Gang
    Zheng, Jie
    Gong, Xiong
    RSC ADVANCES, 2019, 9 (52) : 30317 - 30324
  • [8] A Multifunctional Polymer as an Interfacial Layer for Efficient and Stable Perovskite Solar Cells
    Zhang, Bingqian
    Chen, Chen
    Wang, Xianzhao
    Du, Xiaofan
    Liu, Dachang
    Sun, Xiuhong
    Li, Zhipeng
    Hao, Lianzheng
    Gao, Caiyun
    Li, Yimeng
    Shao, Zhipeng
    Wang, Xiao
    Cui, Guanglei
    Pang, Shuping
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (02)
  • [9] Hydrophobic polymer interlayer for highly efficient and stable perovskite solar cells
    Yang, Qu
    Gong, Xiu
    Qi, Xiaosi
    Liu, Xuncheng
    Liu, Cheng
    Zhou, Quanfeng
    Sun, Qiang
    Shen, Yan
    Wang, Mingkui
    CHEMICAL ENGINEERING JOURNAL, 2023, 454
  • [10] Multifunctional zwitterion modified SnO2 nanoparticles for efficient and stable planar perovskite solar cells
    Li, Benyi
    Wang, Peng
    Shao, Mengting
    Bao, Jiahui
    Wu, Xiaoping
    Lin, Ping
    Xu, Lingbo
    Yu, Xuegong
    Cui, Can
    ORGANIC ELECTRONICS, 2022, 106