Neural network enabled molecular dynamics study of HfO2 phase transitions

被引:0
|
作者
Bichelmaier, Sebastian [1 ,2 ]
Carrete, Jesus [1 ,3 ]
Madsen, Georg K. H. [1 ]
机构
[1] TU Wien, Inst Mat Chem, A-1060 Vienna, Austria
[2] KAI GmbH, Europastr 8, A-9524 Villach, Austria
[3] Univ Zaragoza, Inst Nanociencia & Mat Aragon INMA, CSIC, E-50009 Zaragoza, Spain
基金
奥地利科学基金会;
关键词
ZIRCONIA;
D O I
10.1103/PhysRevB.110.174105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The advances of machine-learned force fields have opened up molecular dynamics (MD) simulations for compounds for which ab initio MD is too resource intensive and phenomena for which classical force fields are insufficient. Here we describe a neural-network force field parametrized to reproduce the r2SCAN potential energy landscape of HfO2. Based on an automatic differentiable implementation of the isothermal-isobaric (NPT ) ensemble with flexible cell fluctuations, we study the phase space of HfO2. We find excellent predictive capabilities regarding the lattice constants and experimental x-ray diffraction data. The phase transition away from monoclinic is clearly visible at a temperature around 2000 K, in agreement with available experimental data and previous calculations. Another abrupt change in lattice constants occurs around 3000 K. While the resulting lattice constants are closer to cubic, they exhibit a small tetragonal distortion, and there is no associated change in volume. We show that this high-temperature structure is in agreement with the available high-temperature diffraction data.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Thermal Transport Mechanism of Amorphous HfO2: A Molecular Dynamics Based Study
    Honggang Zhang
    Han Wei
    Hua Bao
    Journal of Thermal Science, 2022, 31 : 1052 - 1060
  • [2] Thermal Transport Mechanism of Amorphous HfO2: A Molecular Dynamics Based Study
    Zhang Honggang
    Wei Han
    Bao Hua
    JOURNAL OF THERMAL SCIENCE, 2022, 31 (04) : 1052 - 1060
  • [3] Thermal Transport Mechanism of Amorphous HfO2: A Molecular Dynamics Based Study
    ZHANG Honggang
    WEI Han
    BAO Hua
    JournalofThermalScience, 2022, 31 (04) : 1052 - 1060
  • [4] Molecular dynamics simulation of ion implantation into HfO2 and HfO2/Si multi-layer structure
    Shi, H
    Yu, M
    Huang, R
    Wang, YY
    Kunihiro, S
    Oka, H
    CHINESE PHYSICS LETTERS, 2005, 22 (01): : 76 - 79
  • [5] Phase transitions in HfO2 probed by first-principles computations
    Kingsland, Maggie
    Lisenkov, S.
    Najmaei, Sina
    Ponomareva, I.
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (05)
  • [6] Molecular dynamics simulation of amorphous HfO2 for resistive RAM applications
    Broglia, G.
    Ori, G.
    Larcher, L.
    Montorsi, M.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2014, 22 (06)
  • [7] Study of structural phase transition of HfO2 at high pressure
    Mandal, G.
    Jana, R.
    Saha, P.
    Das, P.
    MATERIALS TODAY-PROCEEDINGS, 2016, 3 (09) : 2997 - 3001
  • [8] Pseudopotential study of PrO2 and HfO2 in fluorite phase
    Dabrowski, J
    Zavodinsky, V
    Fleszar, A
    MICROELECTRONICS RELIABILITY, 2001, 41 (07) : 1093 - 1096
  • [9] Origin of the Intrinsic Ferroelectricity of HfO2 from ab Initio Molecular Dynamics
    Fan, P.
    Zhang, Y. K.
    Yang, Q.
    Jiang, J.
    Jiang, L. M.
    Liao, M.
    Zhou, Y. C.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (35): : 21743 - 21750
  • [10] Latent space active learning with message passing neural network: The case of HfO2
    Ouyang, Xinjian
    Wang, Zhilong
    Jie, Xiao
    Zhang, Feng
    Zhang, Yanxing
    Liu, Laijun
    Wang, Dawei
    PHYSICAL REVIEW MATERIALS, 2024, 8 (10):