Achieving 1.7 GPa Considerable Ductility High-Strength Low-Alloy Steel Using Hot-Rolling and Tempering Processes

被引:1
|
作者
Geng, Haoyu [1 ]
Sun, Xiangyu [1 ]
Guo, Xingsen [2 ]
Zhao, Yajun [1 ]
Yin, Xingjie [1 ]
Du, Zhiming [1 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
[2] Zhangjiakou Sanxin Tongda Machinery Mfg Co Ltd, Zhangjiakou 076250, Peoples R China
关键词
high-strength low-alloy steel; hot rolling; tempering; martensitic transformation; strengthening mechanism; CARBON MARTENSITE; MICROSTRUCTURE; BEHAVIOR; FERRITE; TRANSFORMATION; AUSTENITE; EVOLUTION; SILICON;
D O I
10.3390/ma17184495
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To achieve a balanced combination of high strength and high plasticity in high-strength low-alloy (HSLA) steel through a hot-rolling process, post-heat treatment is essential. The effects of post-roll air cooling and oil quenching and subsequent tempering treatment on the microstructure and mechanical properties of HSLA steels were investigated, and the relevant strengthening and toughening mechanisms were analyzed. The microstructure after hot rolling consists of fine martensite and/or bainite with a high density of internal dislocations and lattice defects. Grain boundary strengthening and dislocation strengthening are the main strengthening mechanisms. After tempering, the specimens' microstructures are dominated by tempered martensite, with fine carbides precipitated inside. The oil-quenched and tempered specimens exhibit tempering performance, with a yield strength (YS) of 1410.5 MPa, an ultimate tensile strength (UTS) of 1758.6 MPa, and an elongation of 15.02%, which realizes the optimization of the comprehensive performance of HSLA steel.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Tempering Behavior of Novel Low-Alloy High-Strength Steel
    Dudko, Valeriy
    Yuzbekova, Diana
    Gaidar, Sergey
    Vetrova, Sofia
    Kaibyshev, Rustam
    METALS, 2022, 12 (12)
  • [2] Mechanism of Balanced Strength and Ductility in High-Strength Low-Alloy Steel
    Zhu, Yuzhi
    Jia, Yunke
    Chen, Xiaohua
    Wang, Yanlin
    Wang, Zidong
    METALS, 2022, 12 (10)
  • [3] Delamination Fracture Related to Tempering in a High-Strength Low-Alloy Steel
    Wei Yan
    Wei Sha
    Lin Zhu
    Wei Wang
    Yi-Yin Shan
    Ke Yang
    Metallurgical and Materials Transactions A, 2010, 41 : 159 - 171
  • [4] Delamination Fracture Related to Tempering in a High-Strength Low-Alloy Steel
    Yan, Wei
    Sha, Wei
    Zhu, Lin
    Wang, Wei
    Shan, Yi-Yin
    Yang, Ke
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2010, 41A (01): : 159 - 171
  • [5] Modeling of the Recrystallization Processes during Asymmetric Rolling of a High-Strength Low-Alloy Steel
    A. I. Rudskoi
    G. E. Kodzhaspirov
    E. I. Kamelin
    Russian Metallurgy (Metally), 2021, 2021 : 486 - 491
  • [6] Modeling of the Recrystallization Processes during Asymmetric Rolling of a High-Strength Low-Alloy Steel
    Rudskoi, A., I
    Kodzhaspirov, G. E.
    Kamelin, E., I
    RUSSIAN METALLURGY, 2021, 2021 (04): : 486 - 491
  • [7] HOT DIP GALVANIZING OF HIGH-STRENGTH LOW-ALLOY STEEL
    PRIOR, DC
    TONINI, DE
    METAL FINISHING, 1984, 82 (05) : 15 - 19
  • [8] Effect of Tempering on Mechanical Properties and Microstructure of a High-Strength Low-Alloy Steel
    Z. Janjušević
    Z. Gulišija
    M. Mihailović
    A. Patarić
    Metal Science and Heat Treatment, 2014, 56 : 81 - 83
  • [9] HOT DUCTILITY IN NB-BEARING HIGH-STRENGTH LOW-ALLOY STEELS
    OUCHI, C
    MATSUMOTO, K
    TRANSACTIONS OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1982, 22 (03) : 181 - 189
  • [10] Change of tensile behavior of a high-strength low-alloy steel with tempering temperature
    Yan, Wei
    Zhu, Lin
    Sha, Wei
    Shan, Yi-yin
    Yang, Ke
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 517 (1-2): : 369 - 374