Creativity and Machine Learning: A Survey

被引:2
|
作者
Franceschelli, Giorgio [1 ]
Musolesi, Mirco [1 ,2 ,3 ]
机构
[1] Univ Bologna, Alma Mater Studiorum, Bologna, Emilia Romagna, Italy
[2] UCL, London, England
[3] Univ Coll London, London, North Ireland
关键词
Computational creativity; machine learning; generative deep learning; creativity evaluation methods; OF-THE-ART; COMPUTATIONAL CREATIVITY; GENERATION; MODEL; ALGORITHMS;
D O I
10.1145/3664595
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
There is a growing interest in the area of machine learning and creativity. This survey presents an overview of the history and the state of the art of computational creativity theories, key machine learning techniques (including generative deep learning), and corresponding automatic evaluation methods. After presenting a critical discussion of the key contributions in this area, we outline the current research challenges and emerging opportunities in this field.
引用
收藏
页数:41
相关论文
共 50 条
  • [1] Computational creativity beyond machine learning
    Toivonen, Hannu
    PHYSICS OF LIFE REVIEWS, 2020, 34-35 : 52 - 53
  • [2] Towards Machine Learning as an Enabler of Computational Creativity
    Mateja D.
    Heinzl A.
    IEEE Transactions on Artificial Intelligence, 2021, 2 (06): : 460 - 475
  • [3] Data mining and machine learning in computational creativity
    Toivonen, Hannu
    Gross, Oskar
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2015, 5 (06) : 265 - 275
  • [4] Machine learning in human creativity: status and perspectives
    Farina, Mirko
    Lavazza, Andrea
    Sartori, Giuseppe
    Pedrycz, Witold
    AI & SOCIETY, 2024, 39 (06) : 3017 - 3029
  • [5] Learning through creativity: how creativity can help machine learning achieving deeper understanding
    Moruzzi, Caterina
    RIVISTA ITALIANA DI FILOSOFIA DEL LINGUAGGIO, 2020, 14 (02): : 35 - 46
  • [6] A Machine Learning-Oriented Survey on Tiny Machine Learning
    Capogrosso, Luigi
    Cunico, Federico
    Cheng, Dong Seon
    Fummi, Franco
    Cristani, Marco
    IEEE ACCESS, 2024, 12 : 23406 - 23426
  • [7] Machine Learning Techniques: A Survey
    Kour, Herleen
    Gondhi, Naveen
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, 2020, 46 : 266 - 275
  • [8] Argumentation for Machine Learning: A Survey
    Cocarascu, Oana
    Toni, Francesca
    COMPUTATIONAL MODELS OF ARGUMENT, 2016, 287 : 219 - 230
  • [9] Survey of Machine Learning Accelerators
    Reuther, Albert
    Michaleas, Peter
    Jones, Michael
    Gadepally, Vijay
    Samsi, Siddharth
    Kepner, Jeremy
    2020 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2020,
  • [10] Wireless for Machine Learning: A Survey
    Hellstrom, Henrik
    da Silva, Jose Mairton Barros, Jr.
    Amiri, Mohammad Mohammadi
    Chen, Mingzhe
    Fodor, Viktoria
    Poor, H. Vincent
    Fischione, Carlo
    FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2021, 15 (04): : 290 - 399