Chemo-sensors have deeply integrated into various facets of our daily lives. To further satisfy the increasing performance demand, the current attempts are mainly centered on materials science approaches, usually involving time-& labor-consuming structure designing, synthesis, and modification. To date, it remains largely unexplored to enhance sensing material performance at the fundamental physical level by strategic exploitation of optical properties. In this work, we proposed a facile and versatile approach for improving the material performance by strategically utilizing the surface plasmon resonance-a characteristic property of optical devices. This approach is revealed to have a dual effect on fluorescence-based chemosensing: it amplifies the collection of fluorescence signals and simultaneously expedites the kinetics of chemical reactions. In this work, we developed a surface plasmon-driven fluorescence-based chemosensor that utilizes the 2,4,6-trisformyl phenol-diethylamine (TFP-I) fluorescent probe for the detection of hydrogen peroxide (H2O2) gas molecules. By harnessing the dual-effect induced by surface plasmons, we achieved outstanding sensing performance for H2O2 gas molecules, characterized by 0.0225 ppt sensitivity and an exceedingly low limit of detection. This study substantiates the applicability of the surface plasmon resonance-based optical effect in the realm of fluorescent chemical materials for sensing performance amplification. Beyond this, it pioneers the strategic harnessing of optical effects to manipulate the performance of chemical materials, particularly for the advancement of sensing capabilities.