Unsupervised Domain-Agnostic Fake News Detection Using Multi-Modal Weak Signals

被引:0
|
作者
Silva A. [1 ]
Luo L. [1 ]
Karunasekera S. [1 ]
Leckie C. [1 ]
机构
[1] School of Computing and Information Systems, The University of Melbourne, Parkville, VIC
关键词
COVID-19; Data collection; Fake news; Fake news detection; Social networking (online); Task analysis; Training; unsupervised learning; Vectors; weak signals;
D O I
10.1109/TKDE.2024.3392788
中图分类号
学科分类号
摘要
The emergence of social media as one of the main platforms for people to access news has enabled the wide dissemination of fake news, having serious impacts on society. Thus, it is really important to identify fake news with high confidence in a timely manner, which is not feasible using manual analysis. This has motivated numerous studies on automating fake news detection. Most of these approaches are supervised, which requires extensive time and labour to build a labelled dataset. Although there have been limited attempts at unsupervised fake news detection, their performance suffers due to not exploiting the knowledge from various modalities related to news records and due to the presence of various latent biases in the existing news datasets (e.g., unrealistic real and fake news distributions). To address these limitations, this work proposes an effective framework for unsupervised fake news detection, which first embeds the knowledge available in four modalities (i.e., source credibility, textual content, propagation speed, and user credibility) in news records and then proposes <inline-formula><tex-math notation="LaTeX">$(UMD)^{2}$</tex-math></inline-formula>, a novel noise-robust self-supervised learning technique, to identify the veracity of news records from the multi-modal embeddings. Also, we propose a novel technique to construct news datasets minimizing the latent biases in existing news datasets. Following the proposed approach for dataset construction, we produce a Large-scale Unlabelled News Dataset consisting 419,351 news articles related to COVID-19, acronymed as <sc>LUND-COVID</sc>. We trained the proposed unsupervised framework using <sc>LUND-COVID</sc> to exploit the potential of large datasets, and evaluate it using a set of existing labelled datasets. Our results show that the proposed unsupervised framework largely outperforms existing unsupervised baselines for different tasks such as multi-modal fake news detection, fake news early detection and few-shot fake news detection, while yielding notable improvements for unseen domains during training. IEEE
引用
收藏
页码:1 / 12
页数:11
相关论文
共 50 条
  • [1] Fake news detection based on multi-modal domain adaptation
    Xiaopei Wang
    Jiana Meng
    Di Zhao
    Xuan Meng
    Hewen Sun
    Neural Computing and Applications, 2025, 37 (7) : 5781 - 5793
  • [2] Embracing Domain Differences in Fake News: Cross-domain Fake News Detection using Multi-modal Data
    Silva, Amila
    Luo, Ling
    Karunasekera, Shanika
    Leckie, Christopher
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 557 - 565
  • [3] Multi-modal Chinese Fake News Detection
    Huang, Wenxi
    Zhao, Zhangyi
    Chen, Xiaojun
    Li, Mark Junjie
    Zhang, Qin
    Fournier-Viger, Philippe
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 109 - 117
  • [4] Multi-modal transformer for fake news detection
    Yang, Pingping
    Ma, Jiachen
    Liu, Yong
    Liu, Meng
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 14699 - 14717
  • [5] ConvNet frameworks for multi-modal fake news detection
    Chahat Raj
    Priyanka Meel
    Applied Intelligence, 2021, 51 : 8132 - 8148
  • [6] Multi-Modal Component Embedding for Fake News Detection
    Kang, SeongKu
    Hwang, Junyoung
    Yu, Hwanjo
    PROCEEDINGS OF THE 2020 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM), 2020,
  • [7] An effective strategy for multi-modal fake news detection
    Xu Peng
    Bao Xintong
    Multimedia Tools and Applications, 2022, 81 : 13799 - 13822
  • [8] An effective strategy for multi-modal fake news detection
    Xu Peng
    Bao Xintong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (10) : 13799 - 13822
  • [9] SpotFake: A Multi-modal Framework for Fake News Detection
    Singhal, Shivangi
    Shah, Rajiv Ratn
    Chakraborty, Tanmoy
    Kumaraguru, Ponnurangam
    Satoh, Shin'ichi
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), 2019, : 39 - 47
  • [10] ConvNet frameworks for multi-modal fake news detection
    Raj, Chahat
    Meel, Priyanka
    APPLIED INTELLIGENCE, 2021, 51 (11) : 8132 - 8148