Real-World Efficacy of Explainable Artificial Intelligence using the SAGE Framework and Scenario-Based Design

被引:0
|
作者
Mill, Eleanor [1 ]
Garn, Wolfgang [1 ]
Turner, Chris [1 ]
机构
[1] Department of Business Analytics and Operations, Surrey Business School, Guildford, United Kingdom
关键词
All Open Access; Gold;
D O I
10.1080/08839514.2024.2430867
中图分类号
学科分类号
摘要
54
引用
收藏
相关论文
共 50 条
  • [1] The SAGE Framework for Explaining Context in Explainable Artificial Intelligence
    Mill, Eleanor
    Garn, Wolfgang
    Ryman-Tubb, Nick
    Turner, Chris
    APPLIED ARTIFICIAL INTELLIGENCE, 2024, 38 (01)
  • [2] Interpretation of Structure-Activity Relationships in Real-World Drug Design Data Sets Using Explainable Artificial Intelligence
    Harren, Tobias
    Matter, Hans
    Hessler, Gerhard
    Rarey, Matthias
    Grebner, Christoph
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (03) : 447 - 462
  • [3] Scenario-based design of ambient intelligence
    Ikonen, Veikko
    Niemela, Marketta
    Kaasinen, Eija
    UBIQUITOUS COMPUTING SYSTEMS, PROCEEDINGS, 2006, 4239 : 57 - 72
  • [4] Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients
    Prelaj, Arsela
    Galli, Edoardo Gregorio
    Miskovic, Vanja
    Pesenti, Mattia
    Viscardi, Giuseppe
    Pedica, Benedetta
    Mazzeo, Laura
    Bottiglieri, Achille
    Provenzano, Leonardo
    Spagnoletti, Andrea
    Marinacci, Roberto
    De Toma, Alessandro
    Proto, Claudia
    Ferrara, Roberto
    Brambilla, Marta
    Occhipinti, Mario
    Manglaviti, Sara
    Galli, Giulia
    Signorelli, Diego
    Giani, Claudia
    Beninato, Teresa
    Pircher, Chiara Carlotta
    Rametta, Alessandro
    Kosta, Sokol
    Zanitti, Michele
    Di Mauro, Maria Rosa
    Rinaldi, Arturo
    Di Gregorio, Settimio
    Antonia, Martinetti
    Garassino, Marina Chiara
    de Braud, Filippo G. M.
    Restelli, Marcello
    Lo Russo, Giuseppe
    Ganzinelli, Monica
    Trovo, Francesco
    Pedrocchi, Alessandra Laura Giulia
    FRONTIERS IN ONCOLOGY, 2023, 12
  • [5] Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence
    Chakraborty, Debaditya
    Alam, Arafat
    Chaudhuri, Saptarshi
    Basagaoglu, Hakan
    Sulbaran, Tulio
    Langar, Sandeep
    APPLIED ENERGY, 2021, 291
  • [6] Decoding pan-cancer treatment outcomes using multimodal real-world data and explainable artificial intelligence
    Julius Keyl
    Philipp Keyl
    Grégoire Montavon
    René Hosch
    Alexander Brehmer
    Liliana Mochmann
    Philipp Jurmeister
    Gabriel Dernbach
    Moon Kim
    Sven Koitka
    Sebastian Bauer
    Nikolaos Bechrakis
    Michael Forsting
    Dagmar Führer-Sakel
    Martin Glas
    Viktor Grünwald
    Boris Hadaschik
    Johannes Haubold
    Ken Herrmann
    Stefan Kasper
    Rainer Kimmig
    Stephan Lang
    Tienush Rassaf
    Alexander Roesch
    Dirk Schadendorf
    Jens T. Siveke
    Martin Stuschke
    Ulrich Sure
    Matthias Totzeck
    Anja Welt
    Marcel Wiesweg
    Hideo A. Baba
    Felix Nensa
    Jan Egger
    Klaus-Robert Müller
    Martin Schuler
    Frederick Klauschen
    Jens Kleesiek
    Nature Cancer, 2025, 6 (2) : 307 - 322
  • [7] Explainable artificial intelligence models using real-world electronic health record data: a systematic scoping review
    Payrovnaziri, Seyedeh Neelufar
    Chen, Zhaoyi
    Rengifo-Moreno, Pablo
    Miller, Tim
    Bian, Jiang
    Chen, Jonathan H.
    Liu, Xiuwen
    He, Zhe
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2020, 27 (07) : 1173 - 1185
  • [8] Explainable artificial intelligence framework for FRP composites design
    Yossef, Mostafa
    Noureldin, Mohamed
    Alqabbany, Aghyad
    COMPOSITE STRUCTURES, 2024, 341
  • [9] Scenario-based VR Framework for Product Design
    Terrier, Romain
    Gouranton, Valerie
    Bach, Cedric
    Pallamin, Nico
    Arnaldi, Bruno
    PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 1: GRAPP, 2020, : 219 - 226
  • [10] Enhancing trustworthiness and reliability: advance explainable artificial intelligence framework for real world Sclerosis detection
    Saba, Tanzila
    Mujahid, Muhammad
    Rehman, Amjad
    Alamri, Faten S.
    Ayesha, Noor
    PHYSICA SCRIPTA, 2024, 99 (10)