Hydrogen production and decarbonization with hydrogen absorption-enhanced methanol steam reforming

被引:0
|
作者
Li, Xiao [1 ,2 ]
Yang, Lingzhi [1 ,3 ]
Guo, Ke [1 ,4 ]
Wang, Bin [1 ,5 ]
Hao, Yong [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Xi An Jiao Tong Univ, Xian 710049, Shaanxi, Peoples R China
[4] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230027, Peoples R China
[5] North China Elect Power Univ, Sch Energy Power & Mech Engn, Beijing 102206, Peoples R China
来源
SUSTAINABLE ENERGY & FUELS | 2025年 / 9卷 / 02期
基金
中国国家自然科学基金;
关键词
HIGH-PURITY HYDROGEN; ACTIVATED CARBON; H-2; PRODUCTION; ADSORPTION; REACTOR; PURIFICATION; SIMULATION; CATALYSTS; STORAGE; FUEL;
D O I
10.1039/d4se01166j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Methanol, as a promising liquid hydrogen carrier, has attracted considerable interest in sustainable energy applications due to its renewability and ease of storage and transportation. Although methanol steam reforming for hydrogen production has been extensively studied, it faces several challenges, including high energy consumption at elevated temperatures, low hydrogen purity, and substantial CO2 emission. We propose a four-step H2 absorption-enhanced methanol steam reforming method that includes reforming/absorption, vapor purge, vacuum desorption, and pressurization steps. A two-dimensional, axisymmetric transient numerical model is developed, accounting for flow, heat transfer, mass transfer, chemical reactions, and hydrogen absorption/desorption. All components of the established model, including methanol steam reforming and H2 absorption/desorption, are separately validated through experimental data, confirming the reliability of the model. Results indicate that under baseline conditions of 463 K and 3 bar, the reforming/absorption step achieves a methanol conversion of 98.88% and a hydrogen production rate of 0.87 mmol g-1 min-1, representing an improvement of 17.43 percentage points and 0.17 mmol g-1 min-1 compared with conventional methanol steam reforming, respectively. Additionally, a CO2 stream with a concentration of 98.87% is obtained from the reactor outlet, which is comparable to the concentrations achieved by specialized CO2 capture technologies and can be directly sequestered or reused. In the four-step cycle, incorporating the vapor purge enhances hydrogen purity, achieving levels exceeding 99.9%, compared with only 96.89% purity in the direct vacuum desorption method. Moreover, the four-step method obtains a hydrogen recovery rate of 98.92%. The proposed method provides a clean, straightforward, and highly integrated approach to sustainable hydrogen production and presents a novel option for accelerating the decarbonization of fossil fuel-dominated energy systems.
引用
收藏
页码:467 / 480
页数:14
相关论文
共 50 条
  • [1] Absorption-Enhanced Methanol Steam Reforming for Low-Temperature Hydrogen Production with Carbon Capture
    Li, Xiao
    Yang, Lingzhi
    Hao, Yong
    ENERGIES, 2023, 16 (20)
  • [2] Hydrogen production by steam reforming of methanol
    Iwasa, N
    Nomura, W
    Mayanagi, T
    Fujita, S
    Arai, M
    Takezawa, N
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2004, 37 (02) : 286 - 293
  • [3] Methanol steam reforming for hydrogen production
    Palo, Daniel R.
    Dagle, Robert A.
    Holladay, Jamie D.
    CHEMICAL REVIEWS, 2007, 107 (10) : 3992 - 4021
  • [4] Simulations of Hydrogen Production by Methanol Steam Reforming
    Chiu, Yu-Jen
    Chiu, Han-Chieh
    Hsieh, Ren-Horn
    Jang, Jer-Huan
    Jiang, Bo-Yi
    5TH INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS ENGINEERING (CPESE 2018), 2019, 156 : 38 - 42
  • [5] Methanol steam reforming for hydrogen production in a minireactor
    Wang, Feng
    Li, Longjian
    Qi, Bo
    Cui, Wenzhi
    Xin, Mingdao
    Chen, Qinghua
    Deng, Lianfeng
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2008, 42 (04): : 509 - 514
  • [6] Optimization of methanol steam reforming for hydrogen production
    Pan, L.-W. (panlw@dicp.ac.cn), 2013, Science Press (41):
  • [7] Intensification of hydrogen production by methanol steam reforming
    Sanz, Oihane
    Velasco, Ion
    Perez-Miqueo, Inigo
    Poyato, Rosalia
    Antonio Odriozola, Jose
    Montes, Mario
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (10) : 5250 - 5259
  • [8] Modeling and simulation of microwave double absorption on methanol steam reforming for hydrogen production
    Chen, Wei-Hsin
    Cheng, Tsung-Chieh
    Hung, Chen-I
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (01) : 333 - 344
  • [9] Hydrogen Production by Methanol Steam Reforming Using Microreactor
    Kawamura, Yoshihiro
    Ogura, Naotsugu
    Igarashi, Akira
    JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2013, 56 (05) : 288 - 297
  • [10] Nanosized catalysts for the production of hydrogen by methanol steam reforming
    Valdes-Solis, T.
    Marban, G.
    Fuertes, A. B.
    CATALYSIS TODAY, 2006, 116 (03) : 354 - 360