共 50 条
Quantum many-body scars from unstable periodic orbits
被引:1
|作者:
Evrard, Bertrand
[1
,2
]
Pizzi, Andrea
[3
,4
]
Mistakidis, Simeon I.
[3
,5
,6
]
Dag, Ceren B.
[3
,6
]
机构:
[1] Swiss Fed Inst Technol, Inst Quantum Elect, CH-8093 Zurich, Switzerland
[2] Univ Paris Cite, CNRS, Mat & Phenomenes Quant, F-75013 Paris, France
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[5] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA
[6] Harvard & Smithsonian, Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA
关键词:
STATISTICAL-MECHANICS;
EIGENFUNCTIONS;
THERMALIZATION;
D O I:
10.1103/PhysRevB.110.144302
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Unstable periodic orbits (UPOs) play a key role in the theory of chaos, constituting the "skeleton" of classical chaotic systems and "scarring" the eigenstates of the corresponding quantum system. Recently, nonthermal many-body eigenstates embedded in an otherwise thermal spectrum have been identified as a many-body generalization of quantum scars. The latter, however, are not clearly associated to a chaotic phase space, and the connection between the single- and many-body notions of quantum scars remains therefore incomplete. Here, we find the first quantum many-body scars originating from UPOs of a chaotic phase space. Remarkably, these states verify the eigenstate thermalization hypothesis, and we thus refer to them as thermal quantum many-body scars. While they do not preclude thermalization, their spectral structure featuring approximately equispaced towers of states yields an anomalous oscillatory dynamics preceding thermalization for wavepackets initialized on an UPO. Remarkably, our model hosts both types of scars, thermal and nonthermal, and allows us to study the crossover between the two. Our work illustrates the fundamental principle of classical-quantum correspondence in a many-body system and its limitations.
引用
收藏
页数:15
相关论文