The Multimodal Scene Recognition Method Based on Self-Attention and Distillation

被引:0
|
作者
Sun, Ning [1 ]
Xu, Wei [1 ]
Liu, Jixin [1 ]
Chai, Lei [1 ]
Sun, Haian [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Nanjing 210003, Peoples R China
关键词
Feature extraction; Training; Image recognition; Transformers; Layout; Convolutional neural networks; Sun; NETWORK;
D O I
10.1109/MMUL.2024.3415643
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Scene recognition is a challenging task in computer vision because of the diversity of objects in scene images and the ambiguity of object layouts. In recent years, the emergence of multimodal scene data has provided new solutions for scene recognition, but it has also brought new problems. To address these challenges, the self-attention and distillation-based multimodal scene recognition network (SAD-MSR) is proposed in this article. The backbone of the model adopts the pure transformer structure of self-attention, which can extract local and global spatial features of multimodal scene images. A multistage fusion mechanism was developed for this model in which the concatenated tokens of two modalities are fused based on self-attention in the early stage, while the high-level features extracted from the two modalities are fused based on cross attention in the late stage. Furthermore, a distillation mechanism is introduced to alleviate the problem of a limited number of training samples. Finally, we conducted extensive experiments on two multimodal scene recognition databases, SUN RGB-D and NYU Depth, to show the effectiveness of SAD-MSR. Compared with other state-of-the-art multimodal scene recognition methods, our method can achieve better experimental results.
引用
收藏
页码:25 / 36
页数:12
相关论文
empty
未找到相关数据