Oxygen deficient TiO2 photoanode for photoelectrochemical water oxidation

被引:4
|
作者
Yang Y. [1 ]
Pu Y.-C. [1 ]
Li Y. [1 ]
Zhang J. [1 ]
机构
[1] Department of Chemistry and Biochemistry, University of California, Santa Cruz, 95064, CA
关键词
Defect chemistry; Photoelectrodes; Water oxidation;
D O I
10.4028/www.scientific.net/SSP.253.11
中图分类号
学科分类号
摘要
Titanium dioxide (TiO2) has been widely used as photoanodes in photoelectrochemical (PEC) water splitting. However, the typically high density of bandgap trap states results in fast charge carrier recombination and poor electrical conductivity, and thereby weak PEC performance. Rational creation of oxygen vacancy (Vo) in TiO2 has been demonstrated as an effective method to modify the electronic and optical properties, as well as improved PEC performance. Different strategies have been developed to fabricate oxygen deficient TiO2 photoanodes, such as hydrogen treatment, thermal annealing, electrochemical reduction, flame reduction, and chemical reduction. In conjunction with oxygen vacancy creation, doping of TiO2 with elements further enhances the PEC activity by introducing other bandgap states. Various techniques, including ultrafast laser spectroscopy, have been employed to probe the chemical nature and associated charge carrier dynamics of the bandgap states. © 2016 Trans Tech Publications, Switzerland.
引用
收藏
页码:11 / 40
页数:29
相关论文
共 50 条
  • [1] COMPETITIVE PHOTOELECTROCHEMICAL OXIDATION OF REDUCING AGENTS AT THE TIO2 PHOTOANODE
    FUJISHIMA, A
    INOUE, T
    HONDA, K
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1979, 101 (19) : 5582 - 5588
  • [2] Gallium Phosphide photoanode coated with TiO2 and CoOx for stable photoelectrochemical water oxidation
    Alqahtani, M.
    Ben-Jabar, S.
    Ebaid, M.
    Sathasivam, S.
    Jurczak, P.
    Xia, X.
    Alromaeh, A.
    Blackman, C.
    Qin, Y.
    Zhang, B.
    Ooi, B. S.
    Liu, H.
    Parkin, P.
    Wu, J.
    OPTICS EXPRESS, 2019, 27 (08): : A364 - A371
  • [3] Aminated TiO2 nanotubes as a photoelectrochemical water splitting photoanode
    Hejazi, Seyedsina
    Nhat Truong Nguyen
    Mazare, Anca
    Schmuki, Patrik
    CATALYSIS TODAY, 2017, 281 : 189 - 197
  • [4] Ultrathin corrugated nanowire TiO2 as a versatile photoanode platform for boosting photoelectrochemical alcohol and water oxidation
    Niu, Fushuang
    Zhang, Pengfei
    Zhang, Zhenghao
    Zhou, Quan
    Li, Pengju
    Liu, Rong
    Li, Wei
    Hu, Ke
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (08) : 4170 - 4182
  • [5] Rational modulation for electron migration in CdS/Au/TiO2 photoanode for efficient photoelectrochemical water oxidation
    Zhang, Tingting
    Liu, Changhai
    Zhu, Shishi
    Zhang, Chao
    Chen, Xiaohui
    Chen, Zhidong
    INORGANIC CHEMISTRY COMMUNICATIONS, 2021, 129
  • [6] Hierarchical TiO2/Fe2O3 heterojunction photoanode for improved photoelectrochemical water oxidation
    Deng, Jiujun
    Zhuo, Qiqi
    Lv, Xiaoxin
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 835 : 287 - 292
  • [7] Influence of oxygen pressure to photoelectrochemical oxidation CI direct black 22 on TiO2 nanotube array photoanode
    Isaev, A. B.
    Shabanov, N. S.
    Orudzhev, F. F.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2018, 15 (08) : 1609 - 1618
  • [8] Surfactant and TiO2 underlayer derived porous hematite nanoball array photoanode for enhanced photoelectrochemical water oxidation
    Shinde, Pravin S.
    Mahadik, Mahadeo A.
    Lee, Su Yong
    Ryu, Jungho
    Choi, Sun Hee
    Jang, Jum Suk
    CHEMICAL ENGINEERING JOURNAL, 2017, 320 : 81 - 92
  • [9] Regulating Phase Junction and Oxygen Vacancies of TiO2 Nanoarrays for Boosted Photoelectrochemical Water Oxidation
    Xinyu Zhang
    Pengpeng Tang
    Guangyao Zhai
    Xiu Lin
    Qiang Zhang
    Jiesheng Chen
    Xiao Wei
    Chemical Research in Chinese Universities, 2022, 38 : 1292 - 1300
  • [10] Regulating Phase Junction and Oxygen Vacancies of TiO2 Nanoarrays for Boosted Photoelectrochemical Water Oxidation
    Zhang Xinyu
    Tang Pengpeng
    Zhai Guangyao
    Lin Xiu
    Zhang Qiang
    Chen Jiesheng
    Wei Xiao
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2022, 38 (05) : 1292 - 1300