Method—Deconvoluting Losses in Lithium-Ion Batteries via a Versatile Reference Electrode

被引:0
|
作者
Koch, Brian J. [1 ]
Garrick, Taylor R. [1 ]
Gao, Jing [1 ]
Zhang, Anne [1 ]
机构
[1] Warren Technical Center, General Motors, Warren,MI,48092, United States
关键词
Electrolytic cells - Lithium-ion batteries;
D O I
10.1149/1945-7111/ad9a03
中图分类号
学科分类号
摘要
This work enables high fidelity, virtual evaluation of prospective large format cell designs against program requirements early in the vehicle development process. It demonstrates conclusively the scalability of small, 3-electrode cell data to the large, commercial cell format. In doing so, it provides a protocol for the deconvolution of individual electrode resistances among the kinetics, ohmic, and transport domains at the 3-electrode level that can be directly translated to the same domains in a large format full cell. For the test cell seen in this work, this process details that the largest contribution to the overall losses in the battery cell are due to the anode kinetic and ohmic losses, followed by the losses due to the current collectors, internal leads, welds, and other electrical connections. This process can be generally applied to any electrochemical cell, and the materials and methods reported here can be utilized for any lithium-ion or sodium-ion battery. © 2024 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
引用
收藏
相关论文
共 50 条
  • [1] Errors in the reference electrode measurements in real lithium-ion batteries
    Li, Yalun
    Han, Xuebing
    Feng, Xuning
    Chu, Zhengyu
    Gao, Xinlei
    Li, Ruihe
    Du, Jiuyu
    Lu, Languang
    Ouyang, Minggao
    JOURNAL OF POWER SOURCES, 2021, 481
  • [2] Errors in the reference electrode measurements in real lithium-ion batteries
    Li Y.
    Han X.
    Feng X.
    Chu Z.
    Gao X.
    Li R.
    Du J.
    Lu L.
    Ouyang M.
    Journal of Power Sources, 2021, 481
  • [3] Fast Charging of Lithium-ion Batteries via Electrode Engineering
    Vishnugopi, Bairav S.
    Verma, Ankit
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (09)
  • [4] A Convenient and Versatile Method To Control the Electrode Microstructure toward High-Energy Lithium-Ion Batteries
    Zhao, Hui
    Yang, Qing
    Yuca, Neslihan
    Ling, Min
    Higa, Kenneth
    Battaglia, Vincent S.
    Parkinson, Dilworth Y.
    Srinivasan, Venkat
    Liu, Gao
    NANO LETTERS, 2016, 16 (07) : 4686 - 4690
  • [5] Electrode nanomaterials for lithium-ion batteries
    Yaroslavtsev, A. B.
    Kulova, T. L.
    Skundin, A. M.
    RUSSIAN CHEMICAL REVIEWS, 2015, 84 (08) : 826 - 852
  • [6] Electrode materials for lithium-ion batteries
    Mishra A.
    Mehta A.
    Basu S.
    Malode S.J.
    Shetti N.P.
    Shukla S.S.
    Nadagouda M.N.
    Aminabhavi T.M.
    Materials Science for Energy Technologies, 2018, 1 (02) : 182 - 187
  • [7] Electrode Degradation in Lithium-Ion Batteries
    Pender, Joshua P.
    Jha, Gaurav
    Youn, Duck Hyun
    Ziegler, Joshua M.
    Andoni, Ilektra
    Choi, Eric J.
    Heller, Adam
    Dunn, Bruce S.
    Weiss, Paul S.
    Penner, Reginald M.
    Mullins, C. Buddie
    ACS NANO, 2020, 14 (02) : 1243 - 1295
  • [8] Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries
    Smith, A. J.
    Burns, J. C.
    Trussler, S.
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (02) : A196 - A202
  • [9] Development and Use of a Lithium-Metal Reference Electrode in Aging Studies of Lithium-Ion Batteries
    Belt, Jeffrey R.
    Bernardi, Dawn M.
    Utgikar, Vivek
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (06) : A1116 - A1126
  • [10] The method of formation of planar lithium-ion batteries with composite electrode materials
    Litovchenko, N. A.
    Martynova, I. K.
    Gavrilin, I. M.
    Kudryashova, Y. O.
    Ryazanov, R. M.
    Lebedev, E. A.
    ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2023, 16 (03): : 194 - 199