Polydopamine derived carbon coated cobalt molybdenum layered double hydroxide as highly stable anode materials of sodium-ion battery

被引:1
|
作者
Tai, Po-Chun [1 ]
Chung, Ren-Jei [1 ]
Wang, Guan-Bo [2 ]
Kongvarhodom, Chutima [3 ]
Husain, Sadang [4 ]
Yougbare, Sibidou [5 ]
Chen, Hung-Ming [6 ]
Wu, Yung-Fu [7 ]
Lin, Lu-Yin [1 ]
机构
[1] Natl Taipei Univ Technol, Dept Chem Engn & Biotechnol, Taipei, Taiwan
[2] Natl Taiwan Univ, Dept Chem, Taipei, Taiwan
[3] King Mongkuts Univ Technol Thonburi, Dept Chem Engn, 126 Pracha U Thit, Bangkok 10140, Thailand
[4] Lambung Mangkurat Univ, Fac Math & Nat Sci, Dept Phys, Banjarbaru 70124, Indonesia
[5] Inst Rech Sci Sante IRSS DRCO Nanoro, 03 BP 7192, Ouagadougou 03, Burkina Faso
[6] Gingen Technol Co LTD, Rm 7,10F,189,189,Sec 2,Keelung Rd, Taipei 11054, Taiwan
[7] Ming Chi Univ Technol, Dept Chem Engn, New Taipei City 24301, Taiwan
关键词
Carbon coating; Cobalt molybdenum; Layered double hydroxide; Polydopamine; Sodium-ion battery; Volume expansion; PERFORMANCE; COMPOSITES; MORPHOLOGY; NANOSHEETS; SULFIDE; DESIGN; RATIO; OXIDE;
D O I
10.1016/j.est.2024.113961
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Two-dimensional layered double hydroxide (LDH) has promising open spaces for efficient Na+ + diffusion/ migration. Also, cobalt-based materials have high theoretical capacities and molybdenum incorporations can enhance electrical conductivity. Therefore, cobalt and molybdenum LDH is considered as an efficient anode material of sodium-ion battery (SIB). Nevertheless, volume expansion of LDH may limits the electrochemical performance of SIB. In this work, polydopamine (PDA) derived carbon coated cobalt molybdenum LDH (CoMoLDH) is synthesized via the hydrothermal, polymerization and carbonization processes as a novel anode material of SIB. Hydrothermal and polymerization durations are optimized to regular the morphology of CoMoLDH and achieve the suitable thickness of carbon layer. The optimal carbon coated CoMoLDH (CoMoLDHC-PDA) anode shows a high specific capacity of 779.9 mAh/g at 0.05 A/g. After 100 cycles, the CoMoLDH-C-PDA anodes still presents a specific capacity of 310.9 mAh/g corresponding to capacity retentions of 70.0%. High specific capacity, excellent rate performance and long-term cyclic ability of CoMoLDH-C-PDA are attributed to the higher Na+ + diffusion coefficient and smaller charge-transfer resistances. This study brings a blueprint for modifying novel bimetallic LDH with well-designed carbon coating, which is worthy to apply on other bimetallic LDH for enhancing rate performance and cycle life of SIB in the future.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Progress of Hollow Carbon Materials as Anode for Sodium-ion Battery
    Zhang Lingling
    Dong Huanhuan
    He Xiangxi
    Li Li
    Li Lin
    Wu Xingqiao
    Chou Shulei
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2023, 44 (01):
  • [2] Designing Tin and Hard Carbon Architecture for Stable Sodium-Ion Battery Anode
    Shahzad, Rana Faisal
    Rasul, Shahid
    Mamlouk, Mohamed
    Brewis, Ian
    Shakoor, Rana Abdul
    Zia, Abdul Wasy
    SMALL STRUCTURES, 2025, 6 (02):
  • [3] Insights into the electrochemical properties of bagasse-derived hard carbon anode materials for sodium-ion battery
    Bharat Verma
    Hari Raj
    Harsha Rajput
    Anjan Sil
    Ionics, 2023, 29 : 5205 - 5216
  • [4] Layered Oxide Material as a Highly Stable Na-ion Source and Sink for Investigation of Sodium-ion Battery Materials
    Wu, Fanglin
    Li, Huihua
    Diemant, Thomas
    Mullaliu, Angelo
    Zhang, Huang
    Passerini, Stefano
    CHEMELECTROCHEM, 2024, 11 (03)
  • [5] Insights into the electrochemical properties of bagasse-derived hard carbon anode materials for sodium-ion battery
    Verma, Bharat
    Raj, Hari
    Rajput, Harsha
    Sil, Anjan
    IONICS, 2023, 29 (12) : 5205 - 5216
  • [6] Current Studies of Anode Materials for Sodium-Ion Battery
    He Hanna
    Wang Haiyan
    Tang Yougen
    Liu Younian
    PROGRESS IN CHEMISTRY, 2014, 26 (04) : 572 - 581
  • [7] A Stable Biomass-Derived Hard Carbon Anode for High-Performance Sodium-Ion Full Battery
    Hu, Hai-Yan
    Xiao, Yao
    Ling, Wei
    Wu, Yuan-Bo
    Wang, Ping
    Tan, Shuang-Jie
    Xu, Yan-Song
    Guo, Yu-Jie
    Chen, Wan-Ping
    Tang, Rui-Ren
    Zeng, Xian-Xiang
    Yin, Ya-Xia
    Wu, Xiong-Wei
    ENERGY TECHNOLOGY, 2021, 9 (01)
  • [8] Understanding and Mitigating Lattice Collapse Degradation in Layered Oxide Materials for Sodium-Ion Battery Anode
    Cheng, Lixun
    Luo, Xiaonan
    Ge, Binghui
    ACS APPLIED MATERIALS & INTERFACES, 2024, : 35006 - 35012
  • [9] Sugarcane bagasse derived carbon aerogels as anode materials for sodium-ion batteries
    Yang, Xinyu
    Sun, Shijiao
    Zhao, Xiangyu
    MATERIALS LETTERS, 2024, 377
  • [10] Hard Carbon Derived from Straw as Anode Materials for Sodium-ion Batteries
    Zhang, Hua-zhi
    Chen, Chao
    Xu, Hui
    Yang, Li-wen
    Chen, Jian
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (11):