LEARNING SPATIOTEMPORAL FEATURES FROM INCOMPLETE DATA FOR TRAFFIC FLOW PREDICTION USING HYBRID DEEP NEURAL NETWORKS

被引:0
|
作者
Ghazi, Mehdi Mehdipour [1 ]
Ramezani, Amin [2 ]
Siahi, Mehdi [1 ]
Ghazi, Mostafa Mehdipour [3 ]
机构
[1] Faculty of Mechanics, Electrical and Computer Science, Research Branch IAU, Tehran, Iran
[2] Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
[3] Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
来源
arXiv | 2022年
关键词
Convolutional neural network - Deep learning - Hybrid deep neural network - Hybrid network - Imputation techniques - Missing data imputations - Missing values - Performance measurement system - Traffic flow - Traffic flow prediction;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Deep Convolutional Neural Networks with Random Subspace Learning for Short-term Traffic Flow Prediction with Incomplete Data
    Liao, Shijie
    Chen, Jing
    Hou, Jiaxin
    Xiong, Qingyu
    Wen, Junhao
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [2] Deep hybrid learning framework for spatiotemporal crash prediction using big traffic data
    Kashifi, Mohammad Tamim
    Al-Turki, Mohammed
    Sharify, Abdul Wakil
    INTERNATIONAL JOURNAL OF TRANSPORTATION SCIENCE AND TECHNOLOGY, 2023, 12 (03) : 793 - 808
  • [3] FASTNN: A Deep Learning Approach for Traffic Flow Prediction Considering Spatiotemporal Features
    Zhou, Qianqian
    Chen, Nan
    Lin, Siwei
    SENSORS, 2022, 22 (18)
  • [4] Traffic Flow Prediction with Heterogeneous Spatiotemporal Data Based on a Hybrid Deep Learning Model Using Attention-Mechanism
    Wang, Jing-Doo
    Susanto, Chayadi Oktomy Noto
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 140 (02): : 1711 - 1728
  • [5] Improved Deep Hybrid Networks for Urban Traffic Flow Prediction Using Trajectory Data
    Duan, Zongtao
    Yang, Yun
    Zhang, Kai
    Ni, Yuanyuan
    Bajgain, Saurab
    IEEE ACCESS, 2018, 6 : 31820 - 31827
  • [6] Deep Neural Networks for Traffic Flow Prediction
    Yi, Hongsuk
    Jung, HeeJin
    Bae, Sanghoon
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2017, : 328 - 331
  • [7] Predicting Citywide Road Traffic Flow Using Deep Spatiotemporal Neural Networks
    Jia, Tao
    Yan, Penggao
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (05) : 3101 - 3111
  • [8] Attention based Deep Hybrid Networks for Traffic Flow Prediction using Google Maps Data
    Rahman, Md. Moshiur
    Nower, Naushin
    PROCEEDINGS OF 2023 8TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2023, 2023, : 74 - 81
  • [9] Exploring spatial-temporal relations via deep convolutional neural networks for traffic flow prediction with incomplete data
    Deng, Shaojiang
    Jia, Shuyuan
    Chen, Jing
    APPLIED SOFT COMPUTING, 2019, 78 : 712 - 721
  • [10] Short Term Traffic Flow Prediction Using Hybrid Deep Learning
    Anjaneyulu, Mohandu
    Kubendiran, Mohan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (01): : 1641 - 1656