Hopf Algebra (Co)actions on Rational Functions

被引:0
|
作者
Krähmer, Ulrich [1 ]
Oni, Blessing Bisola [2 ]
机构
[1] Technische Universität Dresden, Institut für Geometrie, Dresden,01062, Germany
[2] The Fields Institute for Research in Mathematical Sciences, 222 College Street, Toronto,M5T 3J1, Canada
关键词
Group theory - Quantum theory;
D O I
10.1007/s10468-024-10294-6
中图分类号
学科分类号
摘要
In the theory of quantum automorphism groups, one constructs Hopf algebras acting on an algebra K from certain algebra morphisms σ:K→Mn(K). This approach is applied to the field K=k(t) of rational functions, and it is investigated when these actions restrict to actions on the coordinate ring B=k[t2,t3] of the cusp. An explicit example is described in detail and shown to define a new quantum homogeneous space structure on the cusp. © The Author(s) 2024.
引用
收藏
页码:2187 / 2216
相关论文
共 50 条
  • [1] Hopf Algebra Actions and Rational Ideals
    Martin Lorenz
    [J]. Algebras and Representation Theory, 2022, 25 : 269 - 280
  • [2] Hopf Algebra Actions and Rational Ideals
    Lorenz, Martin
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2022, 25 (01) : 269 - 280
  • [3] A Hopf algebra structure on rational functions
    VerdeStar, L
    [J]. ADVANCES IN MATHEMATICS, 1995, 116 (02) : 377 - 388
  • [4] HOPF ALGEBRA ACTIONS
    COHEN, M
    FISHMAN, D
    [J]. JOURNAL OF ALGEBRA, 1986, 100 (02) : 363 - 379
  • [5] THE DUALITY THEOREM FOR WEAK HOPF ALGEBRA (Co) ACTIONS
    Zhou, Xuan
    Wang, Shuanhong
    [J]. COMMUNICATIONS IN ALGEBRA, 2010, 38 (12) : 4613 - 4632
  • [6] Stabilizer for Hopf algebra actions
    Yan, M
    Zhu, YC
    [J]. COMMUNICATIONS IN ALGEBRA, 1998, 26 (12) : 3885 - 3898
  • [7] SEMIINVARIANTS FOR HOPF ALGEBRA ACTIONS
    COHEN, M
    RAIANU, S
    WESTREICH, S
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1994, 88 (1-3) : 279 - 306
  • [8] Cotorsion dimensions and Hopf algebra actions
    Chen, Xiuli
    Zhu, Haiyan
    Li, Fang
    [J]. MATHEMATICAL NOTES, 2013, 93 (3-4) : 616 - 623
  • [9] HOPF ALGEBRA ACTIONS IN TENSOR CATEGORIES
    M. BISCHOFF
    A. DAVYDOV
    [J]. Transformation Groups, 2021, 26 : 69 - 80
  • [10] Cotorsion dimensions and Hopf algebra actions
    Xiuli Chen
    Haiyan Zhu
    Fang Li
    [J]. Mathematical Notes, 2013, 93 : 616 - 623