Social Self-Attention Generative Adversarial Networks for Human Trajectory Prediction

被引:2
|
作者
Yang C. [1 ]
Pan H. [1 ]
Sun W. [1 ]
Gao H. [1 ]
机构
[1] Harbin Institute of Technology, Research Institute of Intelligent Control and Systems, Harbin
来源
关键词
Generative adversarial networks (GANs); self-attention; social interactions; trajectory prediction;
D O I
10.1109/TAI.2023.3299899
中图分类号
学科分类号
摘要
Predicting accurate human future trajectories is of critical importance for self-driving vehicles if they are to navigate complex scenarios. Trajectories of humans are not only dependent on the humans themselves, but also the interactions with surrounding agents. Previous works mainly model interactions among agents by using a diversity of polymerization methods that integrate various learned agent states hit or miss. In this article, we propose social self-attention generative adversarial networks (Social SAGAN), which generate socially acceptable multimodal trajectory predictions. Social SAGAN incorporates a generator that predicts future trajectories of pedestrians, a discriminator that classifies trajectory predictions as real or fake, and a social self-attention mechanism that selectively refines the most interactive information and helps the overall model to capture what to pay attention to. Through extensive experiments, we demonstrate that our model achieves competitive prediction accuracy and computational complexity compared with previous state-of-the-art methods on all trajectory forecasting benchmarks. © 2020 IEEE.
引用
收藏
页码:1805 / 1815
页数:10
相关论文
共 50 条
  • [1] Self-Attention Generative Adversarial Networks
    Zhang, Han
    Goodfellow, Ian
    Metaxas, Dimitris
    Odena, Augustus
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [2] IMPROVING HUMAN POSE ESTIMATION WITH SELF-ATTENTION GENERATIVE ADVERSARIAL NETWORKS
    Cao, Zhongzheng
    Wang, Rui
    Wang, Xiangyang
    Liu, Zhi
    Zhu, Xiaoqiang
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2019, : 567 - 572
  • [3] Improving Human Pose Estimation With Self-Attention Generative Adversarial Networks
    Wang, Xiangyang
    Cao, Zhongzheng
    Wang, Rui
    Liu, Zhi
    Zhu, Xiaoqiang
    IEEE ACCESS, 2019, 7 : 119668 - 119680
  • [4] Self-attention and generative adversarial networks for algae monitoring
    Nhut Hai Huynh
    Boer, Gordon
    Schramm, Hauke
    EUROPEAN JOURNAL OF REMOTE SENSING, 2022, 55 (01) : 10 - 22
  • [5] Self-Attention Recurrent Conditional Generative Adversarial Networks for Corporate Credit Rating Prediction
    Lin, Shu-Ying
    Wang, An-Chi
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2023, 39 (05) : 1209 - 1230
  • [6] PEGANs: Phased Evolutionary Generative Adversarial Networks with Self-Attention Module
    Xue, Yu
    Tong, Weinan
    Neri, Ferrante
    Zhang, Yixia
    MATHEMATICS, 2022, 10 (15)
  • [7] Self-attention generative adversarial networks applied to conditional music generation
    Pedro Lucas Tomaz Neves
    José Fornari
    João Batista Florindo
    Multimedia Tools and Applications, 2022, 81 : 24419 - 24430
  • [8] Self-attention generative adversarial networks applied to conditional music generation
    Tomaz Neves, Pedro Lucas
    Fornari, Jose
    Florindo, Joao Batista
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (17) : 24419 - 24430
  • [9] A Self-Attention Based Wasserstein Generative Adversarial Networks for Single Image Inpainting
    Mao, Yuanxin
    Zhang, Tianzhuang
    Fu, Bo
    Thanh, Dang N. H.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (03) : 591 - 599
  • [10] A Self-Attention Based Wasserstein Generative Adversarial Networks for Single Image Inpainting
    Yuanxin Mao
    Tianzhuang Zhang
    Bo Fu
    Dang N. H. Thanh
    Pattern Recognition and Image Analysis, 2022, 32 : 591 - 599