More Efficient Chemical Recycling of Poly(Ethylene Terephthalate) by Intercepting Intermediates

被引:0
|
作者
Watson-Sanders, Shelby [1 ]
Dadmun, Mark [1 ]
机构
[1] Chemistry Department, University of Tennessee, Knoxville,TN,37996, United States
关键词
Oligomers;
D O I
10.1002/cssc.202301698
中图分类号
学科分类号
摘要
The research presented in this paper offers insight into the availability of intermediates in the depolymerization of polyethylene terephthalate (PET) to be used as feedstock to create value-added products. Monitoring the dispersity, molecular weight, end groups, and crystallinity of reaction intermediates during the heterogeneous depolymerization of PET offers insight into the mechanism by which the polymer chains evolve during the reaction. Our results show dispersity decreases and crystallinity increases while the yield of insoluble PET remains high early in the reaction. Our interpretation of this data depicts a mechanism where chain scission targets amorphous tie chains between crystalline phases. Targeting the tie-chains lowers the Mn of the polymer without changing the amount of recovered polymer flake. Chain scission of tie-chains and isolating highly crystalline PET lowers the dispersity (Đ) of the polymer chains, as the size of the crystalline lamellae guides the molecular weight of the depolymerized oligomers. When sufficient end groups of PET chains are converted to alcohol groups, the PET flakes break apart into highly crystalline and less disperse polymer. Our results also demonstrate that the oligomeric depolymerization intermediates are readily repolymerized, offering new opportunities to chemically recycle PET more effectively and efficiently, from both an energy and purification standpoint. © 2024 Wiley-VCH GmbH.
引用
收藏
相关论文
共 50 条
  • [1] Chemical recycling of poly(ethylene terephthalate)
    Paszun, D.
    Spychaj, T.
    Industrial and Engineering Chemistry Research, 1997, 36 (04): : 1373 - 1383
  • [2] Chemical recycling of poly(ethylene terephthalate)
    Paszun, D
    Spychaj, T
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1997, 36 (04) : 1373 - 1383
  • [3] Chemical recycling of poly(ethylene terephthalate)
    Karayannidis, George P.
    Achilias, Dimitris S.
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2007, 292 (02) : 128 - 146
  • [4] Chemical recycling of waste poly(ethylene terephthalate)
    Yang, Y
    Lü, YJ
    Xu, YY
    Xiang, HW
    PROGRESS IN CHEMISTRY, 2001, 13 (01) : 65 - 72
  • [5] New trends in chemical recycling of poly(ethylene terephthalate)
    Spychaj, T
    Paszun, D
    MACROMOLECULAR SYMPOSIA, 1998, 135 : 137 - 145
  • [6] Simplified, fast, and efficient microwave assisted chemical recycling of poly (ethylene terephthalate) waste
    Zangana, Karzan H.
    Fernandez, Antonio
    Holmes, Justin D.
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [7] Chemical recycling of poly(ethylene terephthalate) (PET) by hydrolysis and glycolysis
    Carta, D
    Cao, G
    D'Angeli, C
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2003, 10 (06) : 390 - 394
  • [8] Recycling of poly(ethylene terephthalate) - A review focusing on chemical methods
    Geyer, B.
    Lorenz, G.
    Kandelbauer, A.
    EXPRESS POLYMER LETTERS, 2016, 10 (07): : 559 - 586
  • [9] Efficient method for recycling poly(ethylene terephthalate) to poly(butylene terephthalate) using transesterification reaction
    Kulkarni, NG
    Avadhani, CV
    Sivaram, S
    JOURNAL OF APPLIED POLYMER SCIENCE, 2004, 91 (06) : 3720 - 3729
  • [10] Chemical recycling of poly(ethylene terephthalate) (pet) by hydrolysis and glycolysis
    Daniela Carta
    Giacomo Cao
    Claudio D’Angeli
    Environmental Science and Pollution Research, 2003, 10 : 390 - 394