Bacterial cellulose nanofiber reinforced self-healing hydrogel to construct a theranostic platform of antibacterial and enhanced wound healing

被引:2
|
作者
Li, Wenping [1 ]
Yu, Junjie [1 ]
Li, Qingxue [1 ]
Wang, Heng [1 ]
Liu, Xiaoli [2 ]
Li, Pingyun [1 ]
Jiang, Xiaohong [1 ]
Yang, Jiazhi [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem Engn, 200 Xiao Ling Wei St, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Chinese Med, Dept Pharm, Jiangsu Key Lab Pharmacol & Safety Evaluat Chinese, 138 Xianlin Ave, Nanjing 210023, Jiangsu, Peoples R China
关键词
Bacterial cellulose nanofiber; Hydrogel; Wound healing;
D O I
10.1016/j.ijbiomac.2024.136336
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In order to promote wound healing, self-healing hydrogels with moisturizing property are employed as wound dressing. In this study, bacterial cellulose nanofibers (BCN) with high mechanical strength are used as reinforcement to improve the mechanical properties of self-healing hydrogels. A multifunctional self-healing hydrogel has been constructed by incorporating natural biomass, including Ag hybrid bacterial cellulose nanofiber (Ag-BCN), resveratrol (Res), and carbon nanodots (CNDs). The results of in vitro experiments demonstrate that the mechanical strength of the hybrid hydrogel was increased by 6 times with the addition of Ag-BCN, which also offers excellent antibacterial efficiency (S. aureus 99.99 % and E. coli 99.68 %). The hydrogel with CNDs can observe the healing process of the crack in real time and realize the controlled release of Res through photothermal effect. Moreover, the results of animal model experiments indicate that the prepared hydrogel could reduce the infection of the wound, effectively shorten the progress of wound healing (from 21d to 14 d). All the results imply that the prepared hydrogel has great promise in the application of skin wound healing.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Bacterial cellulose reinforced chitosan-based hydrogel with highly efficient self-healing and enhanced antibacterial activity for wound healing
    Deng, Lili
    Wang, Baoxiu
    Li, Wenying
    Han, Zhiliang
    Chen, Shiyan
    Wang, Huaping
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 217 : 77 - 87
  • [2] Cellulose nanofiber-reinforced antimicrobial and antioxidant multifunctional hydrogel with self-healing, adhesion for enhanced wound healing
    Zhang, Sufeng
    Gatsi, Blessing
    Yao, Xue
    Jin, Yang
    Amhal, Hanane
    CARBOHYDRATE POLYMERS, 2025, 352
  • [3] Nanofibers reinforced injectable hydrogel with self-healing, antibacterial, and hemostatic properties for chronic wound healing
    Qiu, Weiwang
    Han, Hua
    Li, Mengna
    Li, Na
    Wang, Qian
    Qin, Xiaohong
    Wang, Xueli
    Yu, Jianyong
    Zhou, Yunxia
    Li, Yan
    Li, Faxue
    Wu, Dequn
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 596 : 312 - 323
  • [4] A mussel-inspired multifunctional hydrogel reinforced by bacterial cellulose for wound healing: sustained drug release, enhanced adhesion and self-healing property
    Xiaotong Yi
    Jinmei He
    Xinjing Wei
    Hongbin Li
    Xingyuan Liu
    Feng Cheng
    Cellulose, 2023, 30 : 6523 - 6538
  • [5] A mussel-inspired multifunctional hydrogel reinforced by bacterial cellulose for wound healing: sustained drug release, enhanced adhesion and self-healing property
    Yi, Xiaotong
    He, Jinmei
    Wei, Xinjing
    Li, Hongbin
    Liu, Xingyuan
    Cheng, Feng
    CELLULOSE, 2023, 30 (10) : 6523 - 6538
  • [6] Antibacterial Hydrogel with Self-Healing Property for Wound-Healing Applications
    Bo, Yunyi
    Zhang, Linhua
    Wang, Zhifeng
    Shen, Jiafu
    Zhou, Ziwei
    Yang, Yan
    Wang, Yong
    Qin, Jianglei
    He, Yingna
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2021, 7 (11) : 5135 - 5143
  • [7] An injectable and self-healing cellulose nanofiber-reinforced alginate hydrogel for bone repair
    Cui, Shuyuan
    Zhang, Sufeng
    Coseri, Sergiu
    CARBOHYDRATE POLYMERS, 2023, 300
  • [8] An injectable and self-healing hydrogel with antibacterial and angiogenic properties for diabetic wound healing
    Liu, Xuexia
    Zhou, Sijie
    Cai, Biying
    Wang, Yanan
    Deng, Dan
    Wang, Xiaolei
    BIOMATERIALS SCIENCE, 2022, 10 (13) : 3480 - 3492
  • [9] An antibacterial and self-healing hydrogel from aldehyde-carrageenan for wound healing applications
    Khodaei, Taravat
    Nourmohammadi, Jhamak
    Ghaee, Azadeh
    Khodaii, Zohreh
    CARBOHYDRATE POLYMERS, 2023, 302
  • [10] Antibacterial and self-healing sepiolite-based hybrid hydrogel for hemostasis and wound healing
    Jiang, Yizhi
    Wang, Li
    Qi, Wangdan
    Yin, Peisheng
    Liao, Xiang
    Luo, Yuze
    Ding, Yanhuai
    BIOMATERIALS ADVANCES, 2024, 159